Therapeutic Applications of Fluorides in Dental and Medical Diseases-A Systematic Review

Sirigala Lavanya^{1,2*}, K. Hemashree², Prathiba Ramani²

¹Department of Oral Pathology, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India ²Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha University of Medical Sciences, Chennai, Tamil Nadu, India

Abstract

A systematic review was conducted to evaluate the therapeutic applications of fluoride, focusing on dental and medical uses. Searches were performed across five major databases: PubMed, Embase, Cochrane Library, Scopus, and Web of Science. A combination of MeSH terms and keywords was used to cover four domains: Fluorides, Dental Therapeutics, Medical Therapeutics, and Outcomes. Inclusion criteria focused on human studies published in English between 2000 and 2024, while exclusion criteria eliminated non-human studies, irrelevant topics, and grey literature. This systematic review analyzed 34 studies on fluoride's therapeutic uses. Fluoride was consistently effective in preventing and managing dental caries, with combinations like 38% silver diamine fluoride (SDF) and 5% sodium fluoride (NaF) varnish showing higher efficacy. High-fluoride mouth rinses and toothpaste reduced demineralized lesions in orthodontic patients, while Arg-NaF varnishes are effective against enamel erosion. Sodium hyaluronate with fluoride improved gingival health. Some studies noted potential negative effects on dental materials, such as reducing sealant bond strength, highlighting the need for further research on fluoride's broader applications and material interactions. In medical contexts, fluoride demonstrated stabilizing effects in conditions like otosclerosis and osteoporosis, though findings were inconsistent across studies. Fluoride is observed to have a positive role in preventing and treating dental and bone diseases. Studies showed fluoride in specific doses could enhance tooth caries resistance and enamel erosion. Fluorides act in controlling osteosclerosis and osteoporosis by stabilizing disease progression and improving bone density. However, more research is needed to fully understand its long-term effects and optimize its use in both fields.

Keywords: Dental Caries, Enamel Erosion, Fluorides, Gingival Health, Osteoporosis, Osteosclerosis.

Introduction

Fluorides have long been recognized as crucial agents in both dental and medical therapeutics, offering significant benefits in preventing and managing a wide range of conditions [1]. Water is the major dietary source of fluoride. Other important sources of fluoride are tea, seafood that contains edible bones or shells, medicinal supplements, and fluoridated toothpaste. Dietary fluoride is absorbed rapidly in the stomach and small intestine. One-quarter to one-third of the absorbed fluoride is taken up into calcified tissues, whereas the rest is lost in the urine. In bone and teeth, fluoride can displace hydroxyl ions from hydroxyapatite to produce fluorapatite or fluorohydroxyapatite [2].

Fluoride affects bone mineral, bone cells, and bone architecture. Fluoride at physiological levels promotes osteoblast proliferation, increases bone mass, as well as increases osteoblast activity via the upregulation of markers such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP), and bone gla protein (BGP). Fluoride at higher doses accumulates in mineralized tissues, notably in the lattice of bone and tooth crystals resulting in diseases known as dental fluorosis and skeletal fluorosis [2]. The dual role of fluoride in both preventing tooth and bone loss and potentially improving tooth and bone quality underscores its therapeutic potential, yet it also highlights the need for more comprehensive studies to understand the long-term effects of fluoride on these tissues fully [2, 3].

The beneficial effects of fluoride on teeth and bone at various doses were used for therapeutic applications of fluoride in preventing and treating some diseases related to teeth, skin infections and bones [1]. Public health strategies have also leveraged the advantages of fluoride through initiatives like water fluoridation [4, 5]. Water fluoridation, in which a controlled amount of fluoride is added to the public water supply, was considered one of the greatest successes in public health in the twentieth century. Over the past 60 years, research studies conducted in several countries were remarkably consistent in demonstrating substantial reductions in caries prevalence as a result of water fluoridation. Although water fluoridation is the most widely used public health measure for caries prevention, less than 10% of the world's population has access to this intervention, as it is not feasible in many areas because of the nature of water supplies [4, 5]. Concurrently, recent opposition has been growing worldwide against fluoridation, emphasizing the potential and serious risk of toxicity [6]. Since the fluoride benefit is mainly topical, perhaps it is better to deliver fluoride directly to the tooth instead of ingesting it. Several modes of fluoride use have evolved, each with its own recommended concentration. frequency of use, and dosage schedule. In dentistry-topical fluoride applications such as caries prevention strategies, including fluoride toothpaste, rinses, and varnish applications

have proven their effectiveness in some countries, but they are still not universally affordable [7]. Despite these well-documented benefits, there is a growing need to explore the interactions between fluoride treatments and various dental materials, such as titanium and stainless-steel alloys, which are commonly used in restorative procedures [8]. Understanding these interactions is vital for optimizing the use of fluoride in complex dental treatments and ensuring the long-term success of restorative interventions [9].

However, the potential of fluoride extends beyond dental applications, finding relevance in several medical contexts where its therapeutic properties are being increasingly recognized. This expanded role of fluoride in medicine is a promising area of research, with implications for various health conditions and treatments [1, 3, 10, 11]. One of the most significant medical applications of fluoride is its role in bone health, particularly in the prevention and treatment of osteoporosis [11]. Fluoride has been shown to enhance bone mineralization, a process critical for maintaining bone density and strength [3]. This is especially important in the context of osteoporosis, a condition characterized by weakened bones and an increased risk of fractures [12]. Clinical studies have investigated the use of fluoride in managing osteoporosis, with mixed results [13]. The dual role of fluoride in both preventing bone loss and potentially improving bone quality underscores its therapeutic potential, yet it also highlights the need for more comprehensive studies to understand the long-term effects of fluoride on bone health fully [13, 14].

This study aimed to assess the available data regarding the therapeutic uses of fluorides, considering both their efficacy and prospective topics for further investigation. To understand the relationships between the advantages and drawbacks of different forms of fluoride therapy in dental and medical aspects, answers to the following research questions were searched

- 1. Which Dental/Medical diseases opt for fluoride therapy?
- 2. Is the effect the same if applied in different forms of fluoride?
- 3. What are the impacts of time and duration of fluoride exposure on disease control?

Materials and Methods

Search Strategy

Database Selection

To ensure a comprehensive evaluation of fluoride applications, a systematic search was carried out across vital biomedical databases: PubMed, Embase, Cochrane Library, Scopus, and Web of Science. These databases were selected to capture relevant studies and thoroughly examine dental and medical fluoride applications. The search encompassed a broad range of literature to ensure a robust and diverse dataset for the review.

Search Terms

A comprehensive and targeted search strategy was employed using a combination of Medical Subject Headings (MeSH) terms and keywords, organized into four domains: Medical Fluorides, Dental Therapeutics, Therapeutics, and Outcomes. In the Fluorides domain, search terms such as "Fluoride," "Fluoridation," "Fluoride Therapy," "Sodium Fluoride," "Stannous Fluoride," and "Fluoride Compounds" were used, yielding 80 studies from PubMed, 55 from Scopus, and 34 from Web of Science. For the Dental Therapeutics domain, terms like "Dental Caries," "Tooth Decay," "Enamel," "Dentin," "Dental Plaque," and "Oral Hygiene" were employed, resulting in 42 studies from PubMed, 30 from Scopus, and 20 from Web of Science. In the Medical Therapeutics domain. terms such as "Osteoporosis," "Bone Health," "Skeletal Fluorosis," "Antimicrobial," "Antiinflammatory," and "Cancer Prevention" were used, retrieving 34 studies from PubMed, 24

from Scopus, and 16 from Web of Science. For the Outcomes domain, terms including "Efficacy," "Safety," "Adverse Effects," and "Health Outcomes" were applied, yielding 13 studies from PubMed, 10 from Scopus, and 6 from Web of Science. Boolean operators were used to refine the search. A total of 169 studies were identified across databases, and after removing duplicates and screening, 34 studies were included in the final review.

Inclusion and Exclusion Criteria

Inclusion criteria were broad, encompassing studies involving human subjects across all age groups to capture a broad spectrum of fluoride applications across different demographics. To comprehensively assess fluoride's therapeutic potential, the review considered any form of fluoride application or intake, including topical treatments. supplements, and water fluoridation. Only studies that compared fluoride treatments with a placebo, no treatment, or alternative therapies were included to evaluate the relative effectiveness of these interventions. The review focused on studies on fluoride use's efficacy, safety, and health outcomes. To maintain the relevance and timeliness of the review, only studies published between 2000 and 2024 were included, and only those published in English were selected to ensure consistency in data interpretation.

In contrast, exclusion criteria were strictly applied to eliminate studies that did not align with the review's objectives. Non-human studies, such as animal or in vitro research, were excluded to focus exclusively on humanrelated data. Studies not directly related to the therapeutic use of fluorides were also excluded to maintain the review's focus. Additionally, studies that did not provide sufficient primary data or relevant outcomes were excluded to ensure the inclusion of only comprehensive and informative studies. Grey literature, including conference abstracts, dissertations, and nonpeer-reviewed articles, was also excluded, providing the review was based solely on peerreviewed and published research. This rigorous application of criteria was essential in compiling a dataset that would allow for a reliable and thorough evaluation of fluoride's therapeutic roles.

Study Selection

Screening Process

The study selection process was thoughtfully structured to ensure the accurate and comprehensive identification of pertinent studies. This process was implemented in two distinct phases, each carefully designed to maximize the inclusion of relevant studies while upholding rigorous standards for eligibility.

Title, Abstract and Full Text Screening

During the initial phase, two independent reviewers meticulously screened the titles and abstracts followed by full-text screening of all studies retrieved from the initial search. This step was crucial in narrowing down the extensive pool of potential studies to those most relevant to the research question. The reviewers evaluated whether each study met the predefined inclusion criteria, focusing on the population studied, the interventions applied, and the outcomes measured. Any variances or disagreements between the two reviewers were thoroughly discussed and not dismissed outright. In cases where consensus could not be reached through discussion, a third reviewer was consulted to provide an impartial opinion and resolve any disagreements. This multireviewer approach ensured that the selection process was equitable and robust, thereby minimizing the risk of bias in study selection.

Studies that, at first glance, were pertinent based on their abstracts and titles but, upon closer inspection, did not match the entire inclusion criteria, had to be excluded. The review process was conducted consistently in both phases by adhering to predetermined criteria and standard operating procedures. This ensured that only the best and most relevant research was included in the final evaluation.

PRISMA Flow Diagram

The PRISMA flow diagram revealed that 169 records were identified from databases. Before the screening process, 10 duplicate records were removed, along with 28 records excluded based on title screening. This left 131 records to be screened. Of these, 80 records were excluded during screening. The remaining 51 reports were sought for retrieval, but 2 reports were not retrieved. This led to the assessment of 49 reports for eligibility.

During the eligibility assessment, 5 reports were excluded: 8 due to being animal studies and 7 because fluorides were used as a preventive measure. Ultimately, 34 studies were included in the final review.

The PRISMA diagram as shown in Figure 1 provided a detailed, step-by-step overview of the study selection process, showcasing the meticulous and systematic approach taken in this review. This level of documentation and visualization is vital for ensuring the credibility and reliability of the review findings and facilitating replication by other researchers.

Data Extraction

Data Extraction Form and Process

The data extraction form and process were meticulously developed by the research team, comprising experts in fluoride research and systematic review methodology, to capture essential data points critical for analysis and synthesis. It included key sections such as study identification. population characteristics. intervention details, outcomes measured, results, and study limitations. To enhance the rigour of this process, the STROBE and CONSORT checklist was incorporated, ensuring comprehensive reporting of included studies. Feedback from the pilot testing was used to refine the form, ensuring that it was both comprehensive and user-friendly. This structured approach ensured that all relevant

data were consistently and accurately extracted, facilitating a more reliable analysis of the included studies. Once the data were extracted and discrepancies resolved, the information was entered into a pre-designed spreadsheet. This spreadsheet was specifically formatted to facilitate the subsequent analysis, ensuring that all relevant data points were organized and easily accessible for further evaluation.

Quality Assessment

Risk of Bias and Quality Assessment Process

Assessing the quality of the included studies was a critical component of this systematic review, to minimize bias risk as it directly impacted the validity and reliability of the review's findings and, reviewers followed the same principles as followed in the above steps. This detailed assessment provided a clear picture of the internal validity of the RCTs included in the review.

The process of quality assessment was conducted with the same level of rigour as the data extraction process and followed the same steps. The results of the quality assessments were then summarized and presented in a graph and summary in Figures 2 & 3 format, which provided a clear and concise overview of the quality of the included studies. This summary allowed for easy identification of studies with a high risk of bias, which could impact the overall conclusions of the review. By presenting the quality assessment results transparently, the review ensured that readers could critically appraise the reliability of the findings and the potential influence of bias on the review's conclusions.

Statistical analysis was not feasible due to of different designs of the studies.

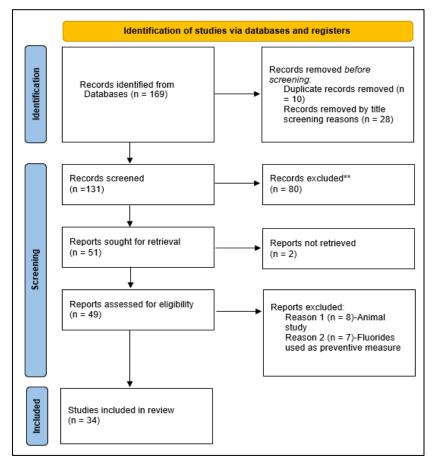


Figure 1. PRISMA Flow Chart

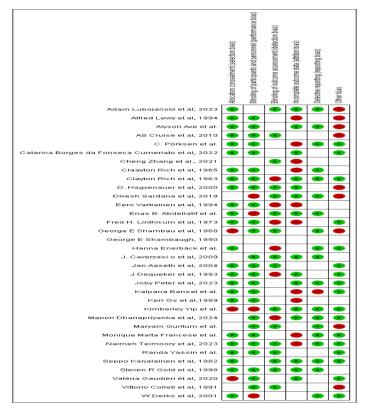


Figure 2. Risk of Bias Graph

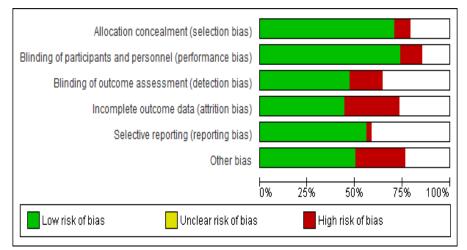


Figure 3. Risk of Bias Summary

S.	Authors	Population	Methods	Results	Conclusio	Limitations	Future Research
No		Sample	Used		ns		
1	Enas B.	220 children,	А	A higher	Combinin	Follow-up	Longer follow-ups and
	Abdellatif	110 per	randomized,	percentage	g SDF and	limited to 6	studies, including
	et al., 2023	group	controlled,	of arrested	NaF	months; lack of	radiographic
	[23]		parallel-	lesions in	increases	radiographic	assessments, are
			group trial	the SDF +	caries	assessment.	needed.
			comparing	NaF group	arrest		
			38% SDF	than in the	rates,		

				I		[
			with 5% NaF	SDF alone	especially		
			varnish vs.	(77.7% vs.	for		
			SDF alone.	73.2%, p =	moderate		
			Lesion status	0.04).	lesions.		
			was assessed	Significant			
			after six	difference			
			months.	in moderate			
				lesions, not			
				in			
				advanced.			
2	C. Pörksen	288 children,	Clinical	No	Daily	None explicitly	Further research on
2	et al., 2023	141	examination:	statistically	lozenge	mentioned.	pre- and probiotics for
	[24]	interventions,	The	significant	use with	inclutioned.	caries prevention.
	[24]		intervention	differences,			carles prevention.
		147 placebos			arginine		
			group	though the	and		
			received a	interventio	probiotics		
			lozenge with	n group	may		
			2% arginine	showed	reduce		
			and	reduced	caries		
			probiotics.	caries	progressio		
			Caries	progression	n, though		
			activity was	and fewer	results		
			analyzed over	active	were not		
			10-12	lesions.	statisticall		
			months.		у		
					significant		
3	Maryam	360 children	А	Both NSF	NSF may	None explicitly	Further research is
	Quritum et	<4 years,	randomized	and SDF	be a better	mentioned.	needed to confirm
	al., 2024	active lesions	trial	improved	option for		findings and explore
	[25]	$(\text{ICDAS} \ge 3)$	comparing	OHRQoL,	ECC		other areas of ECC
	[20]	(100/10 - 3)	single NSF	with NSF	managem		management.
			-		ent due to		management.
			application vs. SDF with	showing better			
					a more		
			6-month	results.	significant		
			follow-up.		impact on		
			Impact on		quality of		
			oral health-		life.		
			related				
			quality of life				
			(OHRQoL)				
			assessed.				
4	Hanna	270	Three-armed	Compared	High-	Non-double-	Future studies should
	Enerbäck	adolescent	RCT	to the	fluoride	blind design;	explore double-blind
	et al., 2023	orthodontic	comparing	control,	mouth	unregistered	designs and more
	[26]		fluoride	there is a	rinses and	protocol.	
<u> </u>	r_~1			u			

		mating (10		1	40.041		antan da d. C. II
		patients (12-	mouth rinse,	lower	toothpaste		extended follow-up
		20 years)	high-fluoride	incidence	are		periods.
			toothpaste,	of	recommen		
			and control	demineraliz	ded to		
			group.	ed lesions	prevent		
			Demineraliza	in high-	deminerali		
			tion was	fluoride	zed		
			assessed	toothpaste	lesions		
			before and	and mouth	during		
			after	rinse	orthodonti		
			treatment.	groups.	с		
					treatment.		
5	Kimberley	72 enamel	In vitro study	4%/8%	Arg-NaF	In vitro study	Future research should
	Yip et al.,	specimens	assessing	Arg-NaF	varnish	with limited	focus on in vivo
	2022 [27]	1	surface	and CPP-	can	generalizability.	effects and explore the
			roughness	ACFP	effectively	<u> </u>	impact of different
			and Ca/P	varnishes	prevent		acidic challenges.
			ratio after	showed	enamel		uerare enuirenges.
			treatment	better	erosion,		
			with Arg-NaF	preventive	especially		
			varnish using	effects	with		
			SEM and				
				against	chlorpheni		
			AFM.	enamel	ramine.		
				erosion			
				than NaF			
<i>.</i>	4.1	110	D 11 11 1	alone.		NT 11 1.1	
6	Alyson	110	Double-blind	Significant	There is	None explicitly	Further studies could
	Axe et al.,	participants	RCT is	improveme	no	mentioned.	explore the long-term
	2019 [28]		assessing the	nts in	additional		impact and different
			impact of	gingival	benefit of		formulations.
			toothpaste	health with	sodium		
			containing	sodium	hyaluronat		
			sodium	bicarbonate	e over		
			hyaluronate	toothpaste	sodium		
			on gingival	compared	bicarbonat		
			health over	to regular	e.		
			six weeks.	fluoride			
				toothpaste.			
7	Randa	Children ≤ 4	RCT	No	Both SDF	Short follow-up	Longer-term studies
	Yassin et	years, 165	compares	significant	and	period; potential	are needed to assess
	al., 2023	with active	38% SDF vs.	difference	NaF/MI	confounding	the sustained effects of
	[29]	lesions	5% NaF	in overall	can arrest	factors.	these interventions.
			varnish plus	caries	ECC, with		
			MI sessions	arrest	SDF being		
			for mothers.	between	better for		
			Caries' arrest	groups,			
		1	Santos arrost	0			

					1 .		
			was assessed	though	advanced		
			over six	SDF was	lesions.		
			months.	better for			
				advanced			
				lesions.			
8	Monique	15 subjects in	In situ study	Both kinds	TiF4/Chit	Small sample	Clinical trials are
	Malta	a crossover,	using palatal	of	osan	size; in situ study	needed to confirm the
	Francese et	double-blind	appliances	toothpaste	toothpaste	limits	efficacy of
	al., 2022	study	with bovine	reduced	is	generalizability.	TiF4/Chitosan
	[30]		enamel and	ETW	effective		toothpaste in broader
			dentin.	significantl	against		populations.
			Comparison	y, with no	ETW,		
			of	difference	similar to		
			TiF4/Chitosa	between	commerci		
			n toothpaste	experiment	al		
			vs.	al and	products.		
			commercial	commercial	1		
			toothpaste on	toothpaste.			
			ETW.	loompuotoi			
9	Kalpana	226 children,	RCT	No	SMART	None explicitly	Future research could
	Bansal et	4-8 years old	comparing	significant	is a viable	mentioned.	focus on longer-term
	al., 2023		success rates	difference	alternative		outcomes and
	[31]		of GIC	in	for		applicability in various
			restorations	restoration	treating		clinical settings.
			using	success	asymptom		
			SMART vs.	rates, but	atic		
			conventional	children	carious		
			techniques	better	lesions in		
			over 24	accepted	primary		
			months.	SMART.	molars,		
					especially		
					in		
					uncoopera		
					tive		
					children.		
10	Manori	16,375	RCTs in	SDF and	Valuable	Low certainty of	More rigorous
	Dhanapriy	children aged	LMICs	NSF	insights	evidence	evidence is needed to
	anka et al,	1.5-14 years		effectively	on		strengthen the findings
	2024 [32]	(33 studies)		arrest	profession		C 01
	L J	· · · · · · · · · · · · · · · · · · ·		primary	ally		
				teeth	applied		
				caries;	fluorides		
				fluoride	in LMICs		
				varnish and	in Livines		
				gel			
				-			
				effectively			

				reduce new caries.			
11	Joby Peter et al, 2023 [33]	-	Water fluoridation, fluoride toothpaste	Water fluoridation and fluoride toothpaste reduce dental caries significantl y.	Fluoride must be in saliva and plaque for decay prevention	-	Consider supplementary fluoride in high- carbon communities.
12	Adam Lubojanski et al, 2023 [34]	-	Endogenous and exogenous fluoride prophylaxis methods	The paper characteriz es the properties of fluoride and its effects on the human body.	Optimal fluoride amounts have positive effects on living organisms	Overdose risk if fluoride intake is uncontrolled.	Long-term effects of fluoride prophylaxis methods on human health
13	Catarina Borges da Fonseca Cumerlato et al, 2022 [35]	9 RCTs	Systematic review of RCTs comparing topical fluoride with placebo or toothbrushing	Topical fluoride may reverse incipient carious lesions in permanent teeth.	Home care with fluoride toothpaste may usually suffice for treatment.	The heterogeneity of data prevented meta-analysis.	Further studies with greater methodological rigor are needed.
14	Naimeh Teimoory et al, 2023 [36]	250 teeth (148 in the fluoride group, 102 in the control group)	In vitro studies on topical fluoride and sealant bond strength	Fluoride application without washing decreased sealant bond strength significantl y.	There was no change in bond strength when tooth surfaces were washed after fluoride.	-	Impact of various fluoride application techniques on sealant adhesion
15	Divesh Sardana et	Only three studies included	Randomized/ quasi- randomized	The fluoride rinse group	Limited evidence on	A limited number of trials	Well-designed randomized controlled

	al, 2019 [37]		controlled clinical trials	had fewer EWSLs than the placebo.	effectiven ess in EWSL reversal post- treatment.	included for review	trials on self-applied fluoride effectiveness
16	Cheng Zhang et al., 2021 [38]	-	19F MRI, 18F PET, and ultrasound for disease imaging	Fluorinated compounds used in imaging, therapeutic s, and environme ntal remediatio n.	Importanc e of controllin g fluorine- fluorine interaction s in biological behavior.	PFAS poses potential health risks.	Develop new strategies for efficient environmental removal and remediation of PFAS.

*Statistical Analysis was not Feasible due to of Different Designs of Studies

Table 2. Summary of Fluoride	Application Met	thodologies and The	eir Effects in Medicine
------------------------------	-----------------	---------------------	-------------------------

S. No	Authors	Population	Methods	Results	Conclusions	Limitations
		Sample	Used			
1	A S	Population	Literature	Sodium	Sodium	Limited evidence
	Cruise et al,	sample size	review	fluoride may	fluoride can	from one
	2010 [39]	not specified	conducted	preserve	reduce	placebo-
		in the text.	using	hearing and	deterioration in	controlled trial.
			Medline and	reduce	hearing for	
			PubMed	vestibular	otosclerosis	
			databases	symptoms in	patients.	
				otosclerosis.		
		Sampling	Double-	Evidence	Lower doses of	Variation in
		methods not	blind,	suggests	sodium	treatment doses
		discussed in	placebo-	reduced	fluoride	and duration
		the text.	controlled	hearing	effective in	without clear
			trial and	deterioration	halting disease	guidelines.
			case-control	in treated	progression.	
			series	otosclerosis		
			analyzed	patients.		
2	W Derks et	19 patients	Fluoride	Fluoride	Fluoride	CT evaluation
	al, 2001	treated with	therapy for	therapy halted	therapy halted	not reliable for
	[40]	fluoride, 22	cochlear	progression of	SNHL	fluoride therapy
		untreated	otosclerosis	sensorineural	progression in	efficacy
		controls		hearing loss in	cochlear	assessment
				patients.	otosclerosis	
					patients.	
		No	Audiometric	No clear	No clear	No clear
		information	and	relationship	correlation	relationship

				6 11	1	1
		provided on	computerized	found between	between CT	between
		sampling	tomography	otospongiotic	findings and	otospongiotic
		methods	evaluation	lesions on CT	SNHL severity	lesions and
				and SNHL.	observed.	SNHL severity
3	J		Fluoride	Fluoride	Fluoride	Controversial
	Dequeker et		therapy for	increases axial	therapy	treatment despite
	al, 1993		osteoporosis	bone density	increases axial	30 years of
	[41]			but not cortical	bone volume in	research
				bone.	osteoporotic	
					patients.	
			Effects of	Approximately	Fluoride's	Approximately
			fluoride on	one third of	therapeutic	one third of
			bone density	patients are	window is	patients are non-
			and fractures	non-	narrow; best	responders
				responders to	for axial	
				fluoride	osteoporosis.	
				therapy.		
4	George E.	Population	Answer:	Fluoride	Fluoride	No double-blind
	Shambaugh,	sample size		therapy for	therapy for	placebo-
	1990[42]	not provided.		otosclerosis is	otosclerosis is	controlled study
				considered	experimental	in the US
				experimental	and unproven.	
				and unproven.		
		Sampling		Lack of	Lack of	Lack of funding
		methods not		double-blind	double-blind	due to inability
		mentioned in		placebo-	placebo-	to patent fluoride
		the text.		controlled	controlled	
				study due to	study due to	
				non-	non-	
				patentability of	patentability.	
				fluoride.		
5	Kerr Gs et		Extensive	Fluoride	Fluoride	Fluoride therapy
	al 1989 [43]		morphologic	therapy for	therapy for	for otosclerosis
			al studies	otosclerosis is	otosclerosis is	is regarded as
				regarded as	regarded as	experimental.
				experimental.	experimental.	
			Fluoride	Efficacy of	Efficacy of	Efficacy of
			therapy	fluoride for	fluoride for	fluoride for
			efficacy	otosclerosis is	otosclerosis is	otosclerosis is
			reported	reported but	reported but	not fully
				experimental.	experimental.	established.
6	J.	Population	In vitro: Al +	Aluminum	Aluminum	Inconsistent
	Caverzasio	sample size	F enhanced	potentiates	potentiates	mitogenic effect
	et al,	not mentioned	osteoblast	fluoride effects	fluoride effects	of fluoride in
	1 1					
	2009[44]	in the text.	proliferation	on osteoblast	on bone	cultured bone-
6		-	therapy efficacy reported In vitro: Al +	experimental. Efficacy of fluoride for otosclerosis is reported but experimental. Aluminum	experimental. Efficacy of fluoride for otosclerosis is reported but experimental. Aluminum	Efficacy of fluoride for otosclerosis is not fully established. Inconsistent

			and TD	and here		
			and TyrP	and bone		
			pathway.	mass.		
		Sampling	In vivo: F +	Combination	Combination	Factors affecting
		methods not	Al increased	of fluoride and	enhances	fluoride's
		discussed in	bone mineral	aluminum	tyrosine	mitogenic effect
		the text.	density	enhances	phosphorylatio	in vitro are
			significantly.	tyrosine	n, osteoblast	unpredictable.
				phosphorylatio	proliferation,	
				n pathway.	and bone mass.	
7	Vittorio	Population	NaF	NaF stabilizes	NaF stabilizes	
	Colletti et	sample size:	treatment in	early	early	
	al, 1991	128 relatives	doses	otosclerosis in	otosclerosis,	
	[45]	of otosclerosis	ranging from	over 60% of	halting disease	
		patients.	6 to 16 mg.	ears.	progression in	
		I	C		over 60%.	
		Sampling	Monitoring	NaF arrests	NaF shows	
		method:	stapedius	disease	effectiveness in	
		Relatives	reflex	process in	preventing	
		diagnosed	morphology	more than	otosclerosis,	
		with	at 1, 2, and 5	50% at 5	suggesting a	
		subclinical			suggesting a secondary	
		otosclerosis	years.	years.	prevention	
					-	
		based on on-			program.	
	F 111	off effect.	G , 05		N. El	N
8	Fred H.	200 volunteers	Strontium85	NaFl changed	NaFl converts	No permanent
	Linthicum e	with surgically	used to	active	active	harm in 1600
	t al, 1973	confirmed	determine	otosclerotic	otosclerosis to	patients over 6
	[46]	stapedial	calcium	foci to	inactive phase.	years.
		otospongiosis	deposition in	quiescence.		
			otosclerosis			
			patients.			
		Double-blind	Patients took	Patients	NaFl therapy	Do not give to
		study with half	25 mg of	showed gap	recommended	patients with
		receiving	NaFl daily	closure and	for progressive	severe chronic
		sodium	for six	reduced	sensorineural	nephritis.
		fluoride and	months.	sensorineural	hearing loss.	
		half placebo		hearing loss.		
9	Clayton	Population	Balance	Fluoride	Fluoride causes	Aching joint pain
	Rich et al,	sample size:	studies	causes calcium	calcium	in some patients
	1963 [47]	68 cryolite	conducted on	retention in	retention in	upon weight
		miners	six patients	subjects with	subjects with	bearing.
			_	metabolic	metabolic bone	-
				bone diseases.	diseases.	
		Sampling	Patients	Fluoride may	Further clinical	Increased
		method: Not	placed on	accelerate	trials of	prednisone dose
		mourou. 110t	controlled	bone	fluoride are	Proditisone dose
			controlled	DOILE	nuonue are	

		specified	diet for	formation or	warranted for	movinfluores
		specified in the text.	consistency	reduce	warranted for osteoporosis	may influence treatment results.
		the text.	consistency		1	treatment results.
				resorption rate.	and Paget's disease.	
10	George E.	546 adults in	Tetracycline	Sodium	Sodium	Otosclerosis
10	-	Framingham,	labeling for	fluoride	fluoride shows	
	Shambaugh	-	calcium			lesions may not
	et al, 1968	Mass		promotes calcium	potential for bone	always cause clinical
	[48]		deposition evaluation		recalcification	
			evaluation	deposits, reduces bone	in otosclerosis.	symptoms.
				resorption in	in otoselerosis.	
				rats.		
		Randomly	Sodium	Fluoride	Fluoride	Fluoride
		selected for	fluoride	inhibits	promotes	treatment did not
		osteoporosis	effects on	experimentally	calcium	significantly
		study	bone calcium	induced	deposits and	change
			content	osteoporosis in	reduces bone	otosclerotic
				rats.	resorption in	lesions in some
					rats.	cases.
11	Clayton	Population	Radiographic	Increased	Fluoride	Clinical response
	Rich et al,	sample size:	densitometric	calcium	therapy led to	cannot argue for
	1965[49]	One man with	methods	retention	increased bone	therapeutic
		severe primary		during sodium	density.	efficacy.
		osteoporosis		fluoride		
				treatment		
		Sampling	Metabolic	Radiographic	Progressive	Difficulty in
		method: Not	studies with	bone density	clinical	determining
		applicable	balance	increase in	remission	benefit due to
			measurement	metaphyses to	observed in	limited
			S	low normal	severe primary	pathophysiology
				values	osteoporosis.	understanding.
12	Valeria	Population	18F-sodium	18F-NaF	18F-NaF	Limited sample
	Gaudieri et	sample size:	fluoride	uptake	uptake	size
	al, 2020	1,375 patients	PET/CT	associated	associated with	
	[50]		imaging	with vascular	vascular	
				calcification in	calcification.	
		Compline	A	CKD patients.	19E NoE	Look of long
		Sampling method:	Assessment of vascular	18F-NaF PET/CT may	18F-NaF PET/CT may	Lack of long-
			of vascular calcification	PET/CT may	PET/CT may	term follow-up
		Retrospective analysis of	using	predict cardiovascular	predict cardiovascular	data
		patients	imaging	events in high-	events.	
		undergoing	techniques	risk patients.	events.	
		PET/CT scans	teriniques	nisk patients.		
13	D.	Population	Followed	Fluoride	Fluoride	High-dose
10	Haguenauer	sample size:	Cochrane	increases	increases	fluoride linked to
	Buendudei	Junpie Sille.	Commune			

	et al, 2000	1429	Handbook	lumbar spine	lumbar spine	nonvertebral
	[51]	postmenopaus	methodology	bone mineral	bone mineral	fractures and
		al women	for meta- analyses	density.	density.	side effects
		Sampling	Structured	Fluoride does	Fluoride does	Unclear factors
		method:	approach to	not reduce	not reduce	responsible for
		Randomized	identify,	vertebral	vertebral	differential
		controlled	extract, and	fractures.	fractures.	effects with
		trials were	synthesize	in actual cost	nuclui est	lower dosages
		conducted.	results to			lower dosages
		conducted.	minimize			
			bias			
14	Jan	Population	Animal	Fluoride	Fluorides of	Insufficient
	Aaseth et al,	sample size	experiments	stimulates	15-25 mg daily	documentation to
	2004 [52]	not provided.		osteoblasts,	stimulate	define fluoride as
				aiding bone	osteoblasts.	essential in
				formation.		humans.
		Sampling	Clinical	Fluoride in	Further	Inadequate
		methods not	studies	combination	research	knowledge of
		discussed in		with	needed on	biomedical
		the text.		antiresorptive	fluoride	effects of daily
				medication	combination	fluoride doses.
				shows	with	
				promising	antiresorptive	
				results.	agents.	
15	Seppo	181,833	Drinking	No significant	Fluoridation	No statistically
	Karjalainen	people in low-	water	effect of	did not affect	significant
	et al, 1982	fluoride area,	fluoridation	fluoride on	otosclerosis	differences in
	[53]	71,180 in	in low-	otosclerosis	occurrence or	hearing results
		Kuopio town.	fluoride area	occurrence or	age of onset.	between groups.
			over 20	age.		
			years.			
		Similar	Comparison	Slightly	Fluoridation	Fluoride intake
		socioeconomic	of fluoride	beneficial	slightly	time did not
		status; no	content in	influence on	improved	show significant
		specific	bone of	severity of	severity of	differences in
		sampling	residents.	otosclerosis.	otosclerosis in	outcomes.
		method			patients.	
		mentioned.				
16	Steven R.	Population	Fluoride	Fluoride	Otosclerosis	Fluoride
	Gold et al,	sample size: 2	treatment	treatment	may increase	treatment may
	1998[54]	patients		resolved facial	risk of facial	cause
				nerve	nerve	gastrointestinal
				stimulation in	stimulation in	side effects
				cochlear	cochlear	
					implants.	
L	1		l	l	inplanto.	

]
				implant		
				patients.		
		Sampling	Botulinum	Fluoride led to	Fluoride	Fluoride is
		method:	toxin	continued	treatment	contraindicated
		Empirical	injection	successful use	showed	in certain
		treatment with		of cochlear	dramatic	medical
		fluoride for		implants.	improvement	conditions
		facial			in refractory	
		stimulation.			cases.	
17	Eero	Population	Fluorine	Fluoridation	Fluoridation	No significant
	Vartiainen e	sample size:	content	benefits non-	benefits non-	effect on hearing
	t al, 1994	280 patients	determined	operated	operated	levels of
	[55]	with	in	otosclerotic	otosclerotic	operated ears.
		otosclerosis.	otosclerotic	ears.	ears.	
			stapes			
			footplate and			
			skeletal			
			bone.			
		Sampling	Hearing	No significant	No significant	Limited impact
		method:	levels	effect on	effect on	of fluoridation
		Follow-up	assessed in	hearing levels	hearing levels	on operated
		study on	otosclerosis	of operated	of operated	otosclerotic ears.
		patients living	patients	ears.	ears.	
		in low-fluoride	living in low-	curb.	curb.	
		area.	fluoride area.			
18	Alfred	20,488	Long-term	Fluorine may	Fluorine may	Potential
10	Lewy et al,	children in	experiment	prevent some	prevent	limitations
	1994 [56]	four counties	with	forms of	deafness and	include need for
	1774 [30]	with fluorine	nontoxic	deafness.	other diseases.	wider
		in water	sodium	deamess.	other diseases.	investigation and
		iii watei	fluoride in			detailed
						correlation.
			public			correlation.
			drinking			
		21,200	water			
		21,200	Survey of	Fluorine's	Fluorine's	The effect of
		children in	incidence of	value in	effect on bone	fluorine on
		Chicago with	diseases in	preventing	and tissue is	various diseases
		fluorine-free	communities	dental caries is	significant.	requires further
		water	with fluorine	highlighted.		study.
			in water			

*Statistical Analysis was not Feasible due to of Different Designs of Studies

Results

systematic review evaluated the This effectiveness of various fluoride application methods in different diseases in dentistry across different populations as summarized in Table 1. The review included 16 studies focusing on fluoride's impact on caries arrest, enamel mineralization, bond strength in dental materials, and overall preventive effects. The fluoride application methods examined included topical fluorides like sodium fluoride (NaF), silver diamine fluoride (SDF), sodium monofluorophosphate, and fluoride varnishes, as well as high-fluoride toothpaste, fluoride fluoride-containing mouth rinses. and toothpaste with additives such as arginine and chitosan.

The findings indicated that SDF and sodium monofluorophosphate effectively arrested caries, with sodium monofluorophosphate significantly improving oral health-related quality of life. Notably, combining 38% SDF with 5% NaF varnish resulted in higher caries arrest rates than using SDF alone. High-fluoride toothpaste and mouth rinses were effective in reducing demineralized lesions, particularly in pediatric and orthodontic patients. Additionally, Arg-NaF offered varnishes superior protection against enamel erosion compared to NaF alone. Sodium hyaluronate combined with fluoride improved gingival health, though without additional benefits over sodium bicarbonate.

However, the review also identified concerns about fluoride's potential negative effects on dental materials, such as reduced sealant bond strength. *In vitro* studies suggested that fluoride application without subsequent washing could reduce sealant bond strength, though this effect could be mitigated by washing after fluoride application. While fluoride gels and varnishes promoted enamel mineralization, they occasionally compromised the bond strength of dental materials.

The therapeutic effects of fluoride in medical studies including 18 studies were also explored

as summarized in Table 2, focusing on its impact on conditions like otosclerosis and osteoporosis.

The findings generally indicated that sodium fluoride (NaF) has a stabilizing effect on otosclerosis, often halting disease progression, reducing hearing loss, and increasing bone mineral density, particularly in the lumbar spine for osteoporosis patients. However, results across different studies were inconsistent, and the use of fluoride remains controversial due to limited evidence from double-blind, placebocontrolled trials.

Discussion

This study presents the findings of a comprehensive review of research aimed at understanding the therapeutic applications of fluoride in treating various dental and medical (bone) conditions. The systematic review is based on 34 studies identified in selected scientific databases using keywords and Boolean operators.

Fluoride is essential for dental care and plays a crucial role in preventing and treating dental caries and enamel erosion, especially during special conditions like orthodontic treatment [15, 16, 17]. Fluoride therapy helps repair damaged tooth enamel by incorporating the mineral fluorapatite into the enamel. While fluorapatite is not a natural component of human teeth, it is found in the teeth of sharks. The main mineral in natural tooth enamel is hydroxyapatite, not fluorapatite. Fluoride reduces tooth enamel decay by forming fluorapatite and incorporating it into the enamel. Fluoride ions slow down the demineralization of tooth enamel and speed up the remineralization process in the early stages of cavity formation. These effects occur through demineralization the and remineralization cycle. Remineralization, which is crucial for preventing decay, happens when fluoride is present in the mouth. Fluoride ions are involved in three principal reactions of remineralization [9, 50, 51].

- 1. Iso-ionic exchange of F^- for OH⁻ in apatite: Ca₁₀(PO₄)₆(OH)₂ + 2F⁻ \rightarrow Ca₁₀(PO₄)₆F₂ + 2OH⁻
- 2. Crystal growth of fluorapatite from a supersaturated solution: 10 $Ca^{2+} + 6PO_4^{3-} + 2F^- \rightarrow Ca_{10}(PO_4)_6F_2$
- 3. Apatite dissolution with CaF_2 formation: $Ca_{10}(PO_4)_6(OH)_2 + 20F^- \rightarrow 10 CaF_2 + 6PO_4^{3-} + 2OH^-$

Iso-ionic exchange by the replacement of F⁻ for OH⁻ in apatite and crystal growth of fluorapatite from supersaturated solutions can occur during exposure to low levels of fluoride (0.01–10 ppm F) over long periods. The reaction of apatite dissolution with CaF₂ formation occurs in higher levels of fluoride (100-10,000 ppm F) and the addition of CaF₂ or a CaF₂-containing compound [24]. All forms of topical fluoride exposure such as toothpaste, gels, varnishes, and mouth rinses appeared to play similar roles in the prevention and remineralization of dental caries and tooth erosion. though there was no available comparative study [15, 16, 17, 19]. The difference existed in ease of application and patient acceptability.

Recent research has brought to light the substantial advantages of various fluoride applications, including sodium fluoride (NaF), silver diamine fluoride (SDF), and sodium monofluorophosphate (NSF) [15, 16]. Sodium fluoride, an established agent, has been proven to effectively reduce the incidence of caries, contributing to a considerable decline in caries prevalence over many years [21]. Silver diamine fluoride (SDF) has attracted attention for its dual function in halting carious lesions and preventing further decay, particularly in where traditional pediatric populations treatment compliance can be challenging [22]. However, it should be noted that the application of SDF may result in tooth discoloration, which is an important consideration, especially in cosmetics [22]. Sodium monofluorophosphate has also demonstrated noteworthy efficacy, particularly in promoting enamel

remineralization and enhancing oral healthrelated quality of life (OHRQoL) in children [23]. Its role in managing early childhood caries emphasizes its importance in pediatric dental care [23].

Using high-fluoride toothpaste and mouth rinses is another area supported by clinical High-fluoride toothpaste, research [22]. typically containing 1.1% sodium fluoride or 5000 ppm fluoride, has been shown to provide additional protection against caries and erosion compared to standard fluoride toothpaste [23, 24]. Mouth rinses with elevated fluoride concentrations contribute significantly to caries prevention and enamel demineralization, particularly during orthodontic treatment [28]. These products benefit high-risk populations and complement other preventive measures, emphasizing the importance of incorporating them into daily oral hygiene routines [30].

Fluoride's role in enhancing enamel mineralization is well-documented [20]. Fluoride gels and varnishes effectively promote the remineralization of demineralized enamel, thus restoring its structural integrity and resistance to future carious attacks [21]. Recent innovations include fluoride formulations with added agents such as arginine and chitosan, further enhancing fluoride's protective effects erosion against enamel [22]. These formulations are particularly beneficial for patients at high risk of erosion due to dietary or environmental factors, providing a promising strategy for preventing enamel wear [22].

However, there are notable concerns regarding fluoride application, particularly its impact on the bond strength of dental materials [28]. Fluoride's interaction with restorative materials can potentially affect their adhesion and longevity, which is crucial in clinical settings [29]. While fluoride's protective benefits for enamel are well-established, its impact on therapeutic procedures requires careful consideration to ensure both effective caries prevention and the durability of dental restorations [29]. Additionally, the efficacy of fluoride treatments can vary based on population characteristics. clinical circumstances, and study methodologies. This variability underscores the need for personalized treatment plans considering individual patient needs and risk factors [23].

The action of fluoride in preventing dental cavities occurs primarily after the teeth have erupted. Both primary and permanent teeth respond similarly to fluoride exposure in preventing cavities and remineralizing enamel erosion. This method is especially advantageous for children under 14 years old [23].

therapeutic effects of fluoride, The fluoride particularly sodium (NaF), on conditions like otosclerosis and osteoporosis have shown promising but inconsistent results across various studies [31, 32]. For otosclerosis, NaF appears to stabilize the condition, potentially halting disease progression and reducing associated hearing loss. Similarly, in osteoporosis, NaF has been observed to increase bone mineral density, especially in the lumbar spine [41]. Different forms of fluoride exposure by oral and parent in different doses in combination with other drugs were tried to treat osteosclerosis and post-menopausal osteoporosis [40, 41, 42]. Fluorides were shown to improve bone density but were not able to prevent fractures [44]. Fluoride therapy is mainly administered in adults and postmenopausal women. The duration of fluoride therapy depends on the intensity of the disease [33].

Side effects of dose and duration related of fluoride exposure also evident [6]. Future research needs to tackle current methodological limitations to improve the understanding of fluoride's role in dental and medical care. More well-designed randomized controlled trials (RCTs) with longer follow-ups and diverse populations are essential for generating robust evidence on fluoride's efficacy. More research with promising results available in dentistry compared to medical application probably due to difficulty in clinical trials.

This review highlights the comprehensive role of fluoride in both dental and medical care, on its applications in focusing caries enamel remineralization, prevention, and treatment advancements. Sodium fluoride (NaF), silver diamine fluoride (SDF), and sodium monofluorophosphate (NSF) have significant demonstrated efficacy in maintaining oral health, with clinical studies supporting their use in high-risk populations. Innovations in fluoride formulations, such as the inclusion of arginine and chitosan, present promising preventive strategies, particularly for patients vulnerable to enamel erosion and caries. However, despite the well-established benefits of fluoride, its potential adverse effects, such as its impact on dental material bond strength and the risk of fluorosis, require further investigation to optimize treatment protocols. Additionally, while fluoride's role in conditions like otosclerosis and osteoporosis is promising, more in-depth studies are necessary to clarify its therapeutic potential. The variability in study methodologies and patient populations further underscores the need for more robust, well-designed randomized controlled trials with diverse samples and standardized outcome measures to ensure the reliability of findings.

Conclusion

Fluoride plays a vital role in both dental and medical care. In dental applications, strong evidence supports its effectiveness in preventing and treating caries and enamel erosion. Fluoride has demonstrated potential therapeutic benefits in medical contexts, particularly in stabilizing conditions like otosclerosis and osteoporosis. Sodium fluoride (NaF) has shown promise in halting disease progression in otosclerosis and improving bone mineral density in osteoporosis patients. However, the medical application of fluoride remains an area of ongoing research, with

inconsistent findings and limited evidence from rigorous clinical trials. Further research is needed to clarify fluoride's long-term effects, optimize its therapeutic use in both dental and medical settings, and ensure its safe and effective application across diverse patient populations.

References

[1]. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 1997, Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US): Available from:https://www.ncbi.nlm.nih.gov/books/NBK109 825/doi:10.17226/5776.PMID: 23115811.

[2]. Aoun, A., Darwiche, F., Al Hayek, S., & Doumit, J., 2018, The Fluoride Debate: The Pros and Cons of Fluoridation. Preventive nutrition and food science, 23(3), 171–180.

https://doi.org/10.3746/pnf.2018.23.3.171

[3]. Everett, E. T., 2011, Fluoride's effects on the formation of teeth and bones, and the influence of genetics. *Journal of dental research*, 90(5), 552–560. https://doi.org/10.1177/0022034510384626

[4]. U.S. Department of Health and Human Services Federal Panel on Community Water Fluoridation 2015, U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. *Public health reports (Washington, D.C.:* 1974), 130(4), 318–331.

https://doi.org/10.1177/003335491513000408.

[5]. Iheozor-Ejiofor, Z., Worthington, H. V., Walsh, T., O'Malley, L., Clarkson, J. E., Macey, R., Alam, R., Tugwell, P., Welch, V., & Glenny, A. M., 2015, Water fluoridation for the prevention of dental caries. *The Cochrane database of systematic reviews*, 2015(6), CD010856. https://doi.org/10.1002/14651858.CD010856.pub2.
[6]. U.S. Environmental Protection Agency. Review of the Fluoride Drinking Water Regulation. 2019.

Conflict of Interest

None.

Acknowledgement

I sincerely thank my guide Dr.Prathiba Ramani for support in preparing this review.

[7]. Petersen, P. E., & Lennon, M. A., 2004, Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. *Community dentistry and oral epidemiology*,32(5),319–321.

https://doi.org/10.1111/j.1600-

0528.2004.00175.x.PMID:15341615

[8]. Mankar, N., Kumbhare, S., Nikhade, P., Mahapatra, J., Agrawal, P., 2023, Role of Fluoride in Dentistry: A Narrative Review. *Cureus*. 2023 Dec 21;15(12):e50884. doi: 10.7759/cureus.50884. PMID: 38249196; PMCID: PMC10799546.

[9]. Hoque, M. E., Showva, N. N., Ahmed, M., Rashid, A. B., Sadique, S. E., El-Bialy, T., & Xu, H., 2022, Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. *Heliyon*, 8(11), e11300. https://doi.org/10.1016/j.heliyon.2022.e11300

 (Retraction
 published
 Heliyon.
 2024
 May

 27;10(11):e31978.
 doi:

 10.1016/j.heliyon.2024.e31978).PMID:
 36387463;

 PMCID:
 PMC9640965.

[10]. Medjedovic, E., Medjedovic, S., Deljo, D., & Sukalo, A., 2015, Impact Of Fluoride On Dental Health Quality. *Materia Socio-Medica*, 27(6), 395– 398. Https://Doi.Org/10.5455/Msm. 2015. 27.395-398. Pmid: 26889098; Pmcid: Pmc4733546.

[11]. Kleerekoper, M., 1998, The role of fluoride in the prevention of osteoporosis. *Endocrinology and metabolism clinics of North America*, 27(2), 441– 452. https://doi.org/10.1016/s0889-8529(05)70015-3. PMID: 9669148.

[12]. Ginaldi, L., Mengoli, L. P., & De Martinis,
M., 2009, Osteoporosis, inflammation and ageing.
In Handbook on Immunosenescence: Basic
Understanding and Clinical Applications (Vol. 9781402090639, pp. 1329–1352). Springer

Netherlands. https://doi.org/10.1007/978-1-4020-9063-9_64.

[13]. Haguenauer, D., Welch, V., Shea, B., Tugwell, P., & Wells, G., 2000, Fluoride for treating postmenopausal osteoporosis. *The Cochrane database of systematic reviews*, 2000(4), CD002825.

https://doi.org/10.1002/14651858.CD002825.

[14]. Pak, C. Y., Adams-Huet, B., Sakhaee, K., Bell, N. H., Licata, A., Johnston, C. et.al, 1996, Comparison of nonrandomized trials with slowrelease sodium fluoride with a randomized placebocontrolled trial in postmenopausal osteoporosis. *Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research*, 11(2), 160–168. https://doi.org/10.1002/jbmr.5650110204.

[15]. Abdellatif, E. B., El Kashlan, M. K., & El Tantawi, M., 2023, Silver diamine fluoride with sodium fluoride varnish versus silver diamine fluoride in arresting early childhood caries: a 6-months follow up of a randomized field trial. *BMC oral health*, *23*(1), 875. https://doi.org/10.1186/s12903-023-03597-5.

[16]. Pørksen, C. J., Ekstrand, K. R., Markvart, M., Larsen, T., Garrido, L. E., & Bakhshandeh, A., 2023, The efficacy of combined arginine and probiotics as an add-on to 1450 ppm fluoride toothpaste to prevent and control dental caries in children - A randomized controlled trial. *Journal of dentistry*, 137, 104670.

https://doi.org/10.1016/j.jdent.2023.104670.

[17]. Quritum, M., Abdella, A., Amer, H., & El Tantawi, M., 2024, Effect of silver diamine fluoride and nano silver fluoride on oral health-related quality of life of children with early childhood caries: A randomized clinical trial. *Journal of dentistry*, 142, 104878.

https://doi.org/10.1016/j.jdent.2024.104878.

[18]. Enerbäck, H., Lövgren, M. L., Strömberg, N., & Westerlund, A., 2023, Effect of high-fluoride toothpaste and mouth rinse on the prevention of demineralized lesions during orthodontic treatment: a randomized controlled trial. *European journal of orthodontics*, 45(5), 477–484. https://doi.org/10.1093/ejo/cjad044. [19]. Yip, K., Lam, P. P. Y., & Yiu, C. K. Y., 2022,
Prevalence and Associated Factors of Erosive Tooth
Wear among Preschool Children-A Systematic
Review and Meta-Analysis. Healthcare (Basel,
Switzerland), 10(3), 491.

https://doi.org/10.3390/healthcare10030491.

[20]. Axe, A., Burnett, G. R., Milleman, K. R., Patil, A., & Milleman, J. L., 2019, Randomized Controlled Clinical Study to Determine the Oral and Dermal Tolerability of an Experimental Denture Wipe. *Journal of prosthodontics : official journal of the American College of Prosthodontists*, 28(2), 138–145. https://doi.org/10.1111/jopr.12992.

[21]. Yassin, R., Amer, H., & Tantawi, M. E., 2023, Effectiveness of silver diamine fluoride versus sodium fluoride varnish combined with mother's motivational interviewing for arresting early childhood caries: a randomized clinical trial. *BMC oral health*, 23(1), 710.

https://doi.org/10.1186/s12903-023-03456-3.

[22]. Francese, M. M., Gonçalves, I. V. B., Vertuan, M., de Souza, B. M., & Magalhães, A. C., 2022, The protective effect of the experimental TiF4 and chitosan toothpaste on erosive tooth wear in vitro. Scientific reports, 12(1), 7088. https://doi.org/10.1038/s41598-022-11261-1.

[23]. Bansal, K., Shamoo, A., Mani, K., K, P. D., Verma, A., Mathur, V. P., & Tewari, N., 2023, Silver diamine fluoride modified atraumatic restorative treatment compared to conventional restorative technique on carious primary molars-A randomized controlled trial. *Journal of dentistry*, 138, 104698.

https://doi.org/10.1016/j.jdent.2023.104698

[24]. Dhanapriyanka, M., Kosgallana, S., Kanthi, R. D. F. C., Jayasekara, P., Dao, T. M. A., Ha, D. H., & Do, L., 2024, Professionally applied fluorides for preventing and arresting dental caries in low- and middle-income countries: Systematic review. *Journal of public health dentistry*, 84(2), 213–227. https://doi.org/10.1111/jphd.12617.

[25]. Peter, Joby & Chandra, H., & Sakhare, Dhanashree, 2023, Systemic Fluorides and Dental Health. 10.2174/9789815080803123030018.

[26]. Lubojanski, A., Piesiak-Panczyszyn, D., Zakrzewski, W., Dobrzynski, W., Szymonowicz, M., Rybak, Z., et.al; 2023, The Safety of Fluoride Compounds and Their Effect on the Human Body-A Narrative Review. Materials (Basel, Switzerland), 16(3), 1242.

https://doi.org/10.3390/ma16031242.

[27]. Cumerlato, C. B. D. F., Santos, C. S. D., Rotta, R. N., Cademartori, M. G., & Corrêa, M. B., 2022, Is professionally applied topical fluoride effective in treating incipient caries? A systematic review. Brazilian oral research, 36, e083. https://doi.org/10.1590/1807-3107bor-

2022.vol36.0083

[28]. Teimoory, N., Katebi, K., Ghahramanzadeh, A., & Vafaei, A., 2023, Effects of topical fluoride treatment on the bond strength of pit and fissure sealants: A systematic review. *Journal of dental research, dental clinics, dental prospects,* 17(2), 81– 86. https://doi.org/10.34172/joddd.2023.39160

[29]. Sardana, D., Manchanda, S., Ekambaram, M., Yang, Y., McGrath, C. P., & Yiu, C. K. Y., 2019, Effectiveness of self-applied topical fluorides against enamel white spot lesions from multibracketed fixed orthodontic treatment: a systematic review. *European journal of orthodontics*, 41(6), 661–668. https://doi.org/10.1093/ejo/cjz015

[30]. Zhang, C., Yan, K., Fu, C., Peng, H., Hawker,C. J., & Whittaker, A. K., 2022, Biological Utility ofFluorinated Compounds: from Materials Design toMolecular Imaging, Therapeutics andEnvironmental Remediation. Chemicalreviews, 122(1), 167–208.

https://doi.org/10.1021/acs.chemrev.1c00632.

[31]. Cruise, A. S., Singh, A., & Quiney, R. E., 2010, Sodium fluoride in otosclerosis treatment: review. *The Journal of laryngology and otology*, 124(6), 583–586. https://doi.org/10.1017/S0022215110000241.

[32]. Derks, W., De Groot, J. A., Raymakers, J. A., & Veldman, J. E., 2001, Fluoride therapy for cochlear otosclerosis? an audiometric and computerized tomography evaluation. *Acta otolaryngologica*, 121(2), 174–177. https://doi.org/10.1080/000164801300043361.

[33]. Dequeker, J., & Declerck, K., 1993, Fluor in the treatment of osteoporosis. An overview of thirty

years clinical research. *Schweizerische medizinische Wochenschrift*, 123(47), 2228–2234.

[34]. Shambaugh G. E., Fluoride Therapy for Otosclerosis. Arch Otolaryngol Head Neck Surg. 1990;116(10):1217.

doi:10.1001/archotol.1990.01870100111026.

[35]. Kerr, G. S., & Hoffman, G. S., 1989, Fluoride therapy for otosclerosis. *Ear, nose, & throat journal*, 68(6), 426–429.

[36]. Caverzasio, J., Imai, T., Ammann, P., Burgener, D., & Bonjour, J. P., 1996, Aluminum potentiates the effect of fluoride on tyrosine phosphorylation and osteoblast replication in vitro and bone mass in vivo. *Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research*, 11(1), 46– 55. https://doi.org/10.1002/jbmr.5650110108.

[37]. Colletti, V., & Fiorino, F. G., 1991, Effect of sodium fluoride on early stages of otosclerosis. *The American journal of*

otology, 12(3), 195–198.PMID: 1882968. [38]. Linthicum, F. H., Jr, House, H. P., & Althaus, S. R., 1973, The effect of sodium fluoride on

otosclerotic activity as determined by strontium. *The Annals of otology, rhinology, and laryngology*, 82(4), 609–615. https://doi.org/10.1177/000348947308200417.

[39]. Rich, C., Ensinck, J., & Ivanovich, P., 1964, The Effects Of Sodium Floride On Calcium Metabolism Of Subjects With Metabolic Bone Diseases. *The Journal of clinical investigation*, 43(4), 545–555.

https://doi.org/10.1172/JCI104940.

[40]. Shambaugh, G. E., Jr, & Petrovic, A., 1968, Effects of sodium fluoride on bone. Application to otosclerosis and other decalcifying bone diseases. *JAMA*, 204(11), 969–973.

[41]. Rich, C., & Ivanovich, P., 1965, Response to sodium fluoride in severe primary osteoporosis. *Annals of internal medicine*, 63(6), 1069–1074. https://doi.org/10.7326/0003-4819-63-6-1069.

[42]. Valeria, Gaudieri., Emilia, Zampella., Adriana, D'Antonio., Alberto, Cuocolo. 18F-sodium fluoride and vascular calcification: Some like it hot. Journal of Nuclear Cardiology, (2020).1-3. doi: 10.1007/S12350-020-02125-0

[43]. Haguenauer, D., Welch, V., Shea, B., Tugwell, P., Adachi, J. D., & Wells, G., 2000, Fluoride for the treatment of postmenopausal osteoporotic fractures: a metaanalysis. Osteoporosis International: a Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 11(9), 727-738.

https://doi.org/10.1007/s001980070051.

[44]. Aaseth, Jan & Shimshi, Mona & Gabrilove, J., & Birketvedt, Grethe, 2004, Fluoride: A Toxic or Therapeutic Agent in the Treatment of Osteoporosis. *The Journal of Trace Elements in Experimental Medicine.* 17. 83 - 92. 10.1002/jtra.10051.

[45]. Karjalainen, S., Kärjä, J., Härmä, R., & Juola, E., 1982, Effect of drinking water fluoridation on stapedial otosclerosis in a low fluoride area. *Acta oto-laryngologica*, 94(1-2), 111–119. https://doi.org/10.3109/00016488209128895.

[46]. Gold, S. R., Miller, V., Kamerer, D. B., & Koconis, C. A., 1998, Fluoride treatment for facial nerve stimulation caused by cochlear implants in otosclerosis. *Otolaryngology-head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery*, 119(5),

521–523. https://doi.org/10.1016/S0194-5998(98)70116-0.

[47]. Vartiainen, E., Karjalainen, S., Nuutinen, J., Suntioinen, S., & Pellinen, P., 1994, Effect of drinking water fluoridation on hearing of patients with otosclerosis in a low fluoride area: a follow-up study. *The American journal of otology*, 15(4), 545– 548.

[48]. Lewy A., 1944, Possible Value Of Nontoxic
Concentrations Of Fluorine In The Prevention of
Deafness From Otosclerosis And Fibrosis: Its
Possible Value In Prevention Of Other
Diseases. Arch Otolaryngol. 39(2):152–154.
doi:10.1001/archotol.1944.00680010163005.

[49]. Ismail, A. I., & Hasson, H., 2008, Fluoride supplements, dental caries and fluorosis: a systematic review. *Journal of the American Dental Association* (1939), 139(11), 1457–1468. https://doi.org/10.14219/jada.archive.2008.0071.

[50]. Rošin-Grget, K., Peroš, K., Sutej, I., & Bašić, K., 2013, The cariostatic mechanisms of fluoride. *Acta medica academica*, 42(2), 179–188. https://doi.org/10.5644/ama2006-124.85.

[51]. Featherstone, J. D., 1999, Prevention and reversal of dental caries: role of low level fluoride. *Community dentistry and oral epidemiology*, 27(1), 31–40. https://doi.org/10.1111/j.1600-

0528.1999.tb01989.x