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Abstract 

Neonatal pneumonia is a major health challenge, significantly contributing to morbidity and 

mortality among newborns. Timely and accurately predicting its progression is crucial for improving 

clinical outcomes and ensuring effective treatment strategies. This study focuses on introducing 

a ground-breaking approach to predict disease progression in neonatal pneumonia through a hybrid 

Artificial Neural Network- Random Forest (ANN-RF) model. The methodology employed in this study 

involves several critical stages. Initially, comprehensive data collection was conducted from neonatal 

intensive care units (NICUs) and paediatric hospitals ensuring a robust dataset that reflects diverse 

clinical scenarios. Following this, data pre-processing was performed to address missing values and 

normalize features, enhancing the quality of the data for analysis. Feature extraction techniques were 

then applied to identify key clinical parameters that are most indicative of disease progression. The 

development of the hybrid ANN-RF classification model effectively combines the strengths of artificial 

neural networks known for their high dimensional pattern recognition capabilities with the 

interpretability and robustness of Random Forest decision trees. This synergy allows for both accurate 

predictions and clear insights into the factors influencing disease outcomes. Remarkably the proposed 

model achieved an accuracy of 98%, demonstrating its potential for practical application in clinical 

settings. Such high accuracy not only aids healthcare professionals in making informed decisions but 

also enhances patient management strategies. Ultimately this study underscores the transformative 

potential of integrating advanced machine learning techniques into neonatal care, paving the way for 

future research aimed at optimizing predictive analysis in healthcare settings. 

Keywords: Artificial Neural Network, Disease Progression Prediction, Hybrid Model, Healthcare 

Analytics, Machine Learning, Neonatal Pneumonia, Random Forest. 

Introduction 

Neonatal pneumonia is the result of a serious 

respiratory infection that affects the young, 

usually within the first 28 days of life. The in-

hospital mortality rate for critically ill newborns 

admitted to neonatal intensive care units 

(NICUs) has remained stubbornly high, ranging 

from 6.4% to 10.9% over the past decade, even 

as medical advancements in perinatal 

resuscitation and neonatal care have 

progressed. This persistent challenge 

underscores the ongoing need for further 

research and improvements in neonatal care 

practices to enhance survival rates and improve 

outcomes of vulnerable newborns [1, 2, 3, 4]. It 



is an important cause of morbidity and 

mortality carrying a substantial proportion of 

the neonatal death toll particularly in 

developing countries [5]. The mortality rate in 

NICUs is influenced by a complex interplay of 

factors, such as pre-existing chronic health 

issues, infections linked to medical devices, 

underdeveloped immune systems and 

prolonged reliance on mechanical ventilation 

[6, 7, 8]. Worldwide, 15% of all neonatal deaths 

are a result of neonatal pneumonia, according to 

the World Health Organization - a health 

concern with significant implications for infant 

health. Prompt detection and appropriate 

management are essential to get a better 

prognosis for those infants [9, 10]. 

Neonatal pneumonia has different 

prevalence rates according to geographic area, 

healthcare infrastructure, and socioeconomic 

conditions. High-income countries have lower 

incidences, but incidence rates are drastically 

higher in low- and middle-income countries 

where poor access to healthcare services and 

suboptimal maternal and neonatal care are 

common. It has been reported that about 3 

million neonatal pneumonia cases occur 

globally, the lion's share in South Asia and sub-

Saharan Africa. Better surveillance and 

reporting of cases are necessary to map the total 

landscape of this disorder [11]. Its condition can 

be classified based on the timing and mode of 

acquisition: congenital (acquired in utero), 

intrapartum (acquired during delivery), or 

postnatal (acquired after birth). Congenital 

pneumonia is usually a result of transplacental 

infection or aspiration of infected amniotic 

fluid. Intrapartum pneumonia is the result of the 

inhalation of pathogens in the birth canal from 

above during parturition [12, 13]. Pneumonia in 

the postnatal period can be community or 

healthcare-associated and can also be acquired 

in the external environment. If left unnoticed, it 

may cause life-threatening respiratory 

complications in newborns due to great 

implications on the respiratory function of 

neonates [14]. 

Neonatal pneumonia has a variety of causes, 

including bacterial, viral and fungal pathogens. 

Bacterial pathogens are a common cause of 

meningitis in the newborn and typically include 

Group B Streptococcus, Escherichia coli, 

and Klebsiella species (transmitted from the 

mother during delivery). Viral agents including 

respiratory syncytial virus (RSV), cytomejson 

virus (CMV) and herpes simplex virus (HSV) 

may be vertical transmission or postnatally 

from acutely infected individuals. Fungal 

infections, mainly due to Candida species, are 

less frequent but may occur in 

immunocompromised infants. Premature birth, 

prolonged rupture of membranes, 

chorioamnionitis, birth asphyxia and congenital 

anomalies are important risk factors for 

neonatal pneumonia. It also carries a great risk 

of meconium aspiration associated with right 

upper-lobe infection being introduced and an 

explosion into the lungs during delivery [15, 

16]. 

Finding out whether a newborn has 

pneumonia is not easy because the symptoms 

are not specific to pneumonia. Symptoms such 

as tachypnea, chest retractions, grunting, poor 

feeding, lethargy and fever are usually present. 

Cyanosis (bluish discolouration of the skin) and 

apneic episodes (pauses in breathing) may also 

be seen in some cases. Diagnostic tools include 

the clinical examination, chest radiography, and 

laboratory tests (e.g., blood cultures and 

complete blood counts). Measurements of pulse 

oximetry and blood gases are also vital in 

grading hypoxemia and respiratory distress. 

Neonatal pneumonia. 

Treatment of neonatal pneumonia includes 

antibiotics, supportive care and in some cases, 

mechanical ventilation. Until culture results 

reveal the causative pathogenic organism, 

broad-spectrum antibiotics are usually 

empirically prescribed. Common antibiotics 

include Ampicillin, gentamicin, and 

cefotaxime. This may include oxygen through 

the tube, intravenous fluid to keep you hydrated 

and oral nutritional help. For the more severe 



cases, mechanical ventilation was used to aid 

with their respiratory function. Urgent and 

aggressive treatment is necessary to prevent 

complications, including sepsis, meningitis and 

chronic lung disease [17]. 

The prevention of neonatal pneumonia is a 

combined strategy: maternal vaccination, good 

environmental practices and especially timely 

and adequate pre- AND postnatal care. Not all 

vaccines are created equal, but such diseases as 

Streptococcus pneumoniae and Hemophilus 

influenzae type b (Hib), ones for which we have 

excellent vaccines, can reduce the incidence of 

pneumonia greatly. Furthermore, by advocating 

breastfeeding and adequate nutrition, we can 

amplify immune responses among neonates. 

Neonatal pneumonia has reached epidemic 

levels and is related to significantly increased 

infant mortality and morbidity. Better 

awareness, early diagnosis, appropriate 

treatment and comprehensive prevention 

strategies can lead to substantial progress in 

combating this disease on a global scale. This 

study presents a comprehensive methodology 

for predicting disease progression in neonatal 

pneumonia using a hybrid Artificial Neural 

Network-Random Forest (ANN-RF) model. 

Healthcare providers, policymakers and 

research stakeholders must collaborate to 

achieve maximum progress in neonatal health 

and the well-being of newborns across the 

globe. 

Related Works 

Ventilator-associated pneumonia (VAP) 

stands as the second most common healthcare-

associated infection among neonatal intensive 

care units (NICUs). This review aims to 

describe the currently available preventive 

procedures for VAP in neonates and update our 

knowledge about its prevalence. The incidence 

rate of ventilator-associated pneumonia (VAP) 

ranges from 16.1 to 89 episodes per 1000 

ventilator days in underdeveloped countries 

versus 1.4 to 7 cases per 1000 ventilator days in 

industrialized countries [18]. The newly 

emerging programs for this nosocomial 

infection about the same patient illness, all 

of which lead to higher morbidity and mortality 

rates and increased length of hospital stay, 

creating a considerable financial burden on 

families for healthcare costs. The 

heterogeneous pathogenesis of VAP has 

spawned numerous recommendations intended 

for preventing its occurrence in the sickest 

NICU patients. For prevention, measures may 

be broadly divided into those that aim to reduce 

infections in general and those that specifically 

address VAP. Some of these treatments are very 

simple and easy to implement, such as hand 

hygiene practices and feeding schedules. 

Bundles are one group of initiates that seems to 

hold a lot of promise as it incorporates a lot of 

the preventative measures for VAP. 

Preventative strategies still need to be 

investigated. 

Bacterial, viral and fungal pneumonia, an 

inflammatory lung disease, tends to be 

widespread in children due to the complexity of 

their immature immune response as their 

respiratory system is different from that of 

adults and also may rapidly change to severe 

critical Pneumonia during illness. Paired with 

the fact that those under five have weaker 

immune systems, this is all the more reason for 

paediatric pneumonia to be identified promptly. 

Radiographic abnormalities, variable clinical 

findings, and interpretation assessment make 

chest X-ray a less favourable tool for 

diagnostics, especially in paediatric situations. 

Deep learning and, more specifically, transfer 

learning holds promise to improve pneumonia 

diagnosis by leveraging large, labelled datasets. 

A bottleneck for creating efficient models is the 

number of annotated training data for paediatric 

chest X-rays [19]. They use self-supervised 

learning to address this problem, with the 

Masked Autoencoder (MAE) in mind. To 

overcome this data scarcity problem and to 

achieve higher accuracy in paediatric 

pneumonia diagnosis, they planned to train the 

MAE model using adult chest X-ray images and 



then fine-tune the pre-trained model with a 

chest X-ray image set of children with 

pneumonia. An approach was proposed to 

perform competitively, with an AUC value of 

0.996 and a precision equivalent of 95.69% in 

discriminating between healthy and infected 

groups [20]. Twenty-one of the newborns and 

13 of the nurses supplied respiratory fluids. 

Using a TaqMan low-density array for 27 

pathogens, sixteen of the twenty samples from 

newborns and four from nursing personnel were 

positive for HRSV. Four of the 16 newborns 

transferred to the hospital were housed in 

regular wards and 7 others in the intensive care 

unit. There were four cases of asymptomatic 

infection among the nursing staff. In addition, 

the second hypervariable region of 6 infants and 

2 nursing staff were obtained to investigate the 

genetic characteristics of HRSV responsible for 

this epidemic. Phylogenetic analysis revealed 

that the 8 sequences (SY strains) were of 

the HRSV BA9 genotype. The results spit in the 

face of this hoopla and indicate that aggressive 

hygiene and disease control measures are 

necessary to prevent the spread of germs and 

keep dangerous respiratory illness epidemics 

under control. 

It was aimed to explore the clinical 

management priority and plausibility of a novel 

multichannel sensor measured signals for the 

discrimination of newborn pneumonia (neoP) 

and treatment resistance evaluation. A new 

wideband multichannel piezoelectric sensor 

was constructed using 180 infants with 

pneumonia. A piezoelectric sensor was utilized 

for pathogen detection in the samples from 

newborns, and the conventional Kirby-Bauer 

(K-B) disc diffusion method was used for 

antibiotic resistance. There was no significant 

difference in the sensitivity and specificity 

between the K-B technique and 

the multichannel piezoelectric sensor (99.58% 

vs 99.32%, P > 0.05). The detection time of the 

K-B technique (17.25 h) was significantly 

higher than that of the multichannel 

piezoelectric sensor (7.43 h) (P < 0.05). By 

pathogen detection, the most common 

pathogens included Klebsiella pneumoniae 

(25.1%) with 13.4% due to Staphylococcus 

aureus and 12.33% associated with 

Haemophilus influenzae. There was 

a Staphylococcus aureus up to > 50% resistant 

rate shown against erythromycin, 

ciprofloxacin, gentamicin, and rifampicin, 

however, some strains might have 100% 

resistance toward vancomycin and rifampicin. 

The piezoelectric sensor arrays based on novel 

multichannel could detect pathogens within less 

time than other methods, with high sensitivity 

and specificity for newborn pneumonia. The 

majority was represented by bacteria with a 

Gram-negative characteristic, followed by 

bacteria Gram-positive and fungus. 

Haemophilus influenzae, Klebsiella 

pneumoniae and Staphylococcus aureus were 

the most common. Moreover, the bacteria that 

caused pneumonia in newborn babies showed 

high resistance to many antibacterial drugs such 

as chloramphenicol, meropenem, amikacin 

sulfate, chloropicrin and rifampicin. 

Methodology 

Data Collection 

The first step is to collect detailed data based 

on which predictive model of disease 

progression in neonatal pneumonia can be 

developed. The purpose is to collect a 

comprehensive set of data on neonatal 

pneumonia cases. These data are pulled from 

neonatal intensive care units (NICUs) and 

pediatric hospitals, ensuring relevance and 

timeliness. Data must be both anonymized and 

gathered in a manner that protects patient 

confidentiality in compliance with ethical 

guidelines. The data to be collected should 

include patient demographics (age in days, 

gender), clinical parameters (birth weight, 

respiratory rate, and oxygen saturation levels), 

diagnostic results (blood culture results), 

treatment details (the antibiotics used, and for 

how long) as well as outcomes (recovered/ not 

recovered). 



Creating a model that can generalize well 

across different populations and conditions 

requires collecting a diverse and 

comprehensive set of data. This phase may also 

include data ingestion from other source 

systems to have enough size of the dataset for 

training an ML model. Finally, it is also 

important to provide and publish the metadata 

of your collections processes so that the data 

itself carries meaning wherever and whenever 

it is used. 

Data Preprocessing 

After that, we preprocessed the data, which 

means cleaning and preparing your data before 

doing any analysis on it. This was a very 

important step as it ensured that the data was of 

high quality and useful for training machine 

learning models. 

Data Cleaning 

There were a few missing values in certain 

cells, which were either filled through the 

appropriate value or the whole record could 

also be dropped if it has many missing values. 

This step also involved cleaning data entry 

mistakes to maintain uniform units and formats 

throughout the data set. The data needed to be 

clean so that the model was not given certain 

variations just because there were errors in the 

data table. 

Normalization 

The second important part of preprocessing 

was normalization, which is especially useful 

for continuous variables like birth weight and 

respiratory rate. Scaling these variables to a 

standard scale allows all the features in 

the numerical column to contribute equally to 

the model during every weight update, without 

any feature having a large base effect on it. This 

was an intermediate step so that the equilibrium 

and comparability of different features could be 

held constant. 

Categorical Encoding 

Categorical encoding had to be performed so 

the random forests could process variables such 

as gender, blood culture result or antibiotic 

used. Based on the categorical nature, it was 

performed with techniques like one-hot 

encoding or label encoding. This was a 

necessary conversion to allow the model 

to make proper sense and use the categorical 

data. 

Data Splitting 

Data was split in a 70-15-15 ratio for Train, 

Validation & Test. The training set was used to 

teach the model, the validation set was to tune 

hyperparameters and prevent overfitting, and 

the test set was used to evaluate how well the 

model performed on data that had never 

been seen. This split served to evaluate the 

reliability and applicability of the model's 

performance. Breaking the data down into these 

different sets meant that we could test how well 

the model performed on data it had never seen 

before. Figure 1 shows the Architecture of 

the Proposed Model. 



 

Figure 1. The Architecture of the Proposed Model 

Feature Extraction 

Identifying and Selecting Relevant Features 

Feature extraction was also a process of 

identifying and selecting the most important 

features from the dataset to be an input for the 

model. This was very important as it defined the 

features that were useful and relevant to the 

model. We selected some of the key features 

that had a high importance in deciding the 

disease progression, namely birth weight, 

respiratory rate, peripheral oxygen saturation, 

blood culture result and antibiotics used. The 

morphometric features were either selected a 

priori based on knowledge of the field and 

disease process or used similarly to the 

radiomic features. 

Feature Engineering 

Besides choosing features already in 

existence, feature engineering was carried 

out to generate new features that might suggest 

extra insights. This consisted of either 

modelling the interaction terms between related 

features or feature transformation to account for 

nonlinear relationships in the data. This 

included, for example, creating interaction 

terms of birth weight and respiratory rate to 

determine how these factors in combination 

impacted disease progression. This would 

allow you to extract more meaningful data out 

of the dataset which will increase your model 

predictability. 

Ensuring Proper Scaling and Formatting 

They preprocessed the features by scaling 

them down and converting them into a suitable 

shape for the model. The continuous features 

were standardized or normalized to have 

equivalent contributions during training. This 

was a necessary step to keep the features 



balanced and comparable. Categorical features 

were encoded; accordingly, either one-hot or 

label encoding, depending on the type of 

categorical variable. The categorical data had to 

be properly encoded for the model to 

successfully interpret and use it. 

Preparing Features for Model Training 

This comment stage while driving toward the 

following activity, during which the model 

would figure out how to make expectations by 

learning genuine accusations of these 

highlights. Feature Selection, Engineering, and 

Formatting ensure that the data being fed into 

the model is of high quality and meaningful by 

choosing the right features. This meticulous 

preparation helped to create a strong predictive 

disease progression model for neonatal 

pneumonia. 

Proposed Model: Hybrid ANN-RF 

The model included the following 

components: Artificial Neural Network (ANN) 

and Random Forest (RF). The ANN part 

consisted of an input layer with neurons 

equalled to the number of the feature columns, 

a few hidden layers using ReLu activation 

functions and their neurons, which varied in 

number between them, and the SIGMOID 

activation function used for our output layer 

because we had a binary classification task. The 

architecture of the ANN was designed to take 

advantage of their ability as non-linear function 

approximates to approximate complex, non-

linear relationships in the data. 

An ANN was trained in the training set, 

where weight optimizations took place by 

backpropagation using an optimizer suitable 

such as Adam (Adaptive Moment Estimation). 

We use the Adam optimizer as it is an efficient 

optimizer and handles sparse gradients for 

noisy problems. ANN training is the process of 

the ANN learning to tweak its weights so that it 

converges towards a local minimum of its loss 

function, which assists in improving 

predictions with all subsequent iterations. This 

was because the hidden layers formed a 

network that could capture complex patterns in 

the input dataset, which makes it an effective 

feature extractor by itself. After the ANN was 

trained, feature representation was extracted 

from the output of the penultimate layer (the 

layer before the output layer). Implemented by 

multiple neurons in the network, this layer 

learned the important patterns and 

dependencies hidden inside the dataset, 

transforming those raw input features into a 

higher-level representation. The feature 

representation, in a nutshell, summarizes the 

input data for the modelling task in a sparse and 

informative way (sparse because only 

important aspects of the data are picked). 

Then, the RF model was trained using this 

feature representation as input. The RF piece is 

a collection of decision trees that are trained on 

varied samples (bootstraps) to learn even the 

non-linear features. All the decision trees in the 

RF gave the final prediction based on input 

features. The RF was able to boost its 

robustness and prediction accuracy by 

aggregating the predictions from multiple trees. 

This method, called ensemble, reduces the 

chance of overfitting in normal where the same 

problem happens even with big datasets for 

machine learning models. The final prediction 

was made using an ensemble of the outputs of 

the ANN and RF models. Using a hybrid 

approach helped this model to gain from the 

high-dimensional pattern recognition capability 

of neural networks as well as the interpretability 

and robustness of decision trees. The ANN 

component provided insight into the underlying 

properties of the data, and the RF component 

served to stabilize and reduce variability in 

predictions. The hybrid model joined these two 

methods with the best of ANN and RF, thereby 

producing a proper and dependable predictive 

model to predict neonatal pneumonia 

progression. 

This hybrid model approach provided a more 

nuanced answer that combined advanced deep 

learning models with traditional ensemble 



methods to address disease outcome prediction 

as a multi-faceted challenge. With the feature 

extraction capability of ANN coupled with the 

robust decision-making power of RF, these two 

elements formed a synergy-strengthening 

groundwork for modelling nuances that drive 

the progression of neonatal pneumonia, leading 

to an overall performance gain. 

Results 

The whole process started with the most 

important part, that of data collection, in which 

highly structured, relevant and overall data was 

collected from NICUs and paediatric hospitals. 

Observed data collected in this study included 

patient demographics, clinical parameters, 

diagnostic results, treatment details, and patient 

outcomes. These data were anonymized to 

protect patient confidentiality and ethical 

principles. The strategy behind this was to take 

a strong breath, reflecting the main pie of each 

case of neonatal pneumonia and lay down a 

firm groundwork for the subsequent phases of 

the PRA process. 

 

Figure 2. Dataset Sample 

All the collected data was then subjected to 

pre-processing, which was aimed at clearing the 

data and preparing it for evaluation. This set 

also included a few important tasks: to treat 

missing values by imputing them with proper 

values or removing records that have a high 

amount of missing data. It also required data to 

be corrected so that units and formats were 

consistent. Transforming continuous variables 

such as birth weight and first recorded 



respiration into a z-score standardised these 

variables so they contributed equally to the 

training of the model, averting the possibility of 

any single variable weighing more on the model 

than another. The dataset sample is shown in 

Figure 2. 

 

Figure 3. Distribution of Age in Days 

 

Figure 4. Birth Weight Distribution by Gender 

This required converting categorical 

variables (e.g. gender, blood culture result, 

antibiotic used) into numerical ones through 

methods like one-hot encoding or label 

encoding. The dataset was further split into a 

training, validation, and test set, usually a 70-

15-15 ratio. Training sets the sample of data 

used to fit the model. Validation sets the sample 

of data used to provide an unbiased evaluation 

of a model fit on the training dataset while 

tuning model hyperparameters. Test set — the 

sample of data used to evaluate the final 

performance of a machine learning model. The 

distribution of Age in Days and Birth Weight 

Distribution by Gender is shown in Figures 3 

and 4, respectively. 



 
Figure 5. Distribution of Oxygen Saturation 

 

Figure 6. Distribution of Respiratory Rate 

The Feature extraction was where the best 

features out of the data set were identified and 

extracted as input to the model. This step was 

important because the features' quality and 

relevance had a direct impact on the model's 

performance. The potentially critical features of 

the dataset that contribute towards the 

progression of disease, including (in order) 

birth weight, respiratory rate, oxygen saturation 

levels, blood culture results and antibiotics 

used, were selected based on our domain 

knowledge. Furthermore, we did feature 

engineering by adding new features like 

interactions of some features with other features 

or transformation to the non-linear patterns in 

data. It was critical to have these features scaled 

and formatted correctly for model training. The 

distribution of Oxygen Saturation and the 

Distribution of Respiratory Rate is shown in 

Figures 5 and 6. Treatment Duration by 

Outcome and Correlation Matrix is shown in 

Figures 7 and 8. 



 

Figure 7. Treatment Duration by Outcome 

 

Figure 8. Correlation Matrix 

Table 1. Model Evaluation of Various Models 

Model Accuracy 

Score 

Precision Recall F1 Score 

SVM 0.8 0.78 0.8 0.79 

KNN 0.75 0.74 0.73 0.74 

CNN 0.85 0.84 0.86 0.85 



ANN 0.9 0.89 0.91 0.9 

Proposed 

Model 

0.98 0.97 0.98 0.98 

Table 1 shows the evaluation metrics of 

different machine learning models, highlighting 

the superiority of the proposed model. K-

Nearest Neighbors (KNN) were slightly worse 

and showed an accuracy of 0.75 and an F1 score 

of 0.74. Convolutional Neural Network (CNN) 

was more successful, with 0.85 accuracy and 

an F1 score of 0.85. The Artificial Neural 

Network (ANN) did well, with an accuracy of 

0.9 and an F1 score of 0.9. The proposed model 

was significantly better than others, with an all-

time high accuracy of 0.98 and an F1 score of 

0.98, which maintains its higher precision and 

recall. Table 1 shows the Model Evaluation of 

Various Models. The combined predictions of 

these trees have made the model more stable 

and accurate. Figure 9 shows the Accuracy 

Scores of various Models. 

 

Figure 9. Model Comparison – Accuracy Scores 

Table 2. Model Comparison - Performance and Resource Metrics 

Model Training Time 

(seconds) 

ROC-AUC 

Score 

Memory Usage 

(MB) 

SVM 120 0.82 150 

KNN 60 0.78 100 

CNN 240 0.88 200 

ANN 180 0.91 180 

Proposed Model 300 0.99 220 



In Table 2, we compare the models in terms 

of performance and resource metrics, 

highlighting the high efficacy achieved by the 

proposed model. The SVM took 120 seconds to 

train, having an ROC-AUC score of about 0.82 

and a memory utilization of 150MB. The ROC-

AUC score ranged from 0.78 for the KNN 

model that was fast to train - it took only 60 

seconds - but consumed all of the 100 MB 

memory. A CNN trained in 240 seconds and 

with 200MB of memory, achieving an ROC-

AUC of 0.88. The following scripts required 

180 seconds of training time, produced an 

ROC-AUC score of 0.91 and consumed 180 

MB of memory. Despite that, a proposed 

model, also with a computational complexity of 

300s, achieved the highest ROC-AUC score of 

0.99, and using 220 MB of memory achieved 

top-level performance results and trivial 

resource savings. A model cross-validation was 

made to get an insight into the generalization of 

the data since this way is possible to not only 

see how that would work on test data as well as 

counting on serious results measured by the 

root mean square error. This detailed 

assessment ensured the model was stable and 

effective and provided good predictions on new 

data. 

 
Figure 10. Training and Testing Accuracy 

 

Figure 11. Confusion Matrix 



Discussion 

At the heart of it was creating a hybrid model 

that combined Artificial Neural Networks 

(ANN) and Random Forest (RF) for 

classification. ANN component: (i) Input layer; 

multiple hidden layers using ReLU activation 

function and sigmoid function as activation 

function for the output layer, which is used as 

binary classification. The training set was used 

to train the ANN, optimizing weights using 

backpropagation and the Adam optimizer [21, 

22]. The final trained ANN was used as 

a feature extractor, able to capture intricate 

patterns present in the data due to the inherent 

flexibility of hidden layers. The output from the 

penultimate layer of this ANN is employed as 

the feature representation (after training). Such 

representation summarized the most important 

patterns and relations in data, taking raw input 

features into a higher-level abstraction. 

Subsequently, the RF model was trained with 

this feature representation as input [23]. 

The RF constituent was an ensemble of 

decision trees, each trained on different bagging 

subsets of data to learn intricate interactions. 

Finally, a combined result was obtained from 

the prediction of both the ANN & RF models. 

This hybrid method made sure that the model 

used the high-dimensional pattern recognition 

properties of neural networks and the 

interpretability and robustness of decision trees. 

The ANN was used to obtain an in-depth look 

into the structure of the data and Random Forest 

for improved alignment on previous cases with 

less variance. By combining these two 

approaches, the hybrid model provided a robust 

and more precise forecast. Metrics such as 

Accuracy, Precision, Recall, F1-score and 

ROC-AUC are used to evaluate the 

performance of the model [24]. Training and 

Testing Accuracy and Confusion Matrix is 

shown in Figures 10 and 11. In summary, the 

whole procedure starts from data collection to 

pre-processing through feature extraction and 

then model development, and at the end, 

evaluation was the systematic and meticulous 

approach. Emphasize each phase was intended 

to improve the data quality and feature 

significance, and the model was both powerful 

and reliable in predicting disease progression in 

neonatal pneumonia. 

Conclusion 

In conclusion, the methodology outlined for 

predicting disease progression in neonatal 

pneumonia using a hybrid ANN-RF model 

proved to be comprehensive and effective. By 

integrating data collection, pre-processing, 

feature extraction, and advanced model 

classification techniques, we created a robust 

framework capable of accurately predicting 

outcomes in neonatal pneumonia cases. The 

hybrid approach, combining the strengths of 

artificial neural networks and random forests, 

leveraged the high-dimensional pattern 

recognition capabilities of neural networks and 

the interpretability and robustness of decision 

trees, resulting in a model that performed 

exceptionally well, achieving an accuracy of 

98%. This high level of accuracy indicates the 

model's potential for practical application in 

clinical settings, providing reliable predictions 

that can inform treatment decisions and 

improve patient outcomes. Future work can 

extend this model by incorporating larger and 

more diverse datasets to enhance its 

generalizability across different populations 

and healthcare settings. Additionally, exploring 

other machine learning algorithms and 

ensemble methods could further improve 

predictive performance. Integrating real-time 

data from wearable health monitoring devices 

and incorporating genetic information could 

provide deeper insights and more personalized 

predictions. Lastly, developing user-friendly 

interfaces for healthcare professionals to 

interact with the model's predictions can 

facilitate its adoption in clinical settings, 

ultimately improving patient outcomes and care 

efficiency in neonatal pneumonia. 
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