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Abstract 

Phosphatase Tensin Homolog deleted on Chromosome 10 is a tumour suppressor gene frequently 

inactivated in human cancers. Single Nucleotide Polymorphisms (SNPs) are the substitution of one 

DNA nucleotide base with another and a commonly occurring genomic alteration. This study involved 

analyzing various missense SNPs of the PTEN gene using five different bioinformatics tools -SIFT, 

POLYPHEN, CADD, META LR, and MUTATION ASSESSOR to identify the tolerated from intolerant 

ones. String analysis of PTEN protein-protein interactions was also done using the STRING database. 

A total of 8298 missense SNPs were retrieved and analyzed using the five bioinformatics tools. Out of 

8298 missense SNPs analyzed, SIFT categorized 5281 SNPs as deleterious, while POLYPHEN 

identified 4490 as damaging. CADD showed that 909 were disease-causing SNPs. META LR identified 

2995 as damaging, and the MUTATION ASSESSOR identified 897 high-risk missense SNPs. This study 

shows that the various in silico tools are a good preliminary approach to identifying the harmful 

missense SNPs. 
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Introduction 

The term “in silico” is a term similar to the 

biological terms “in vivo” and in vitro which 

mean ‘in the living body and ‘in the test tube 

respectively. It refers to data or knowledge 

acquired with the help of computer simulations 

and model analysis done in a virtual 

environment [1]. 

PTEN, phosphatase and tensin homolog, 

deleted on chromosome 10, is an important 

tumour suppressor gene located on 

chromosome 10q23.3 and is mutated in a wide 

variety of cancers. PTEN encodes a protein 

phosphatase comprised of 403 amino acids and 

has dual specificity on phosphoryl/threonyl and 

phosphotyrosine residues. PTEN causes 

dephosphorylation of PIP3 (phosphatidyl 

inositol 3,4,5-triphosphate to 

phosphatidylinositol 4,5-bisphosphate (PIP2) 

and hence suppresses Protein kinase B/Akt 

signalling, thus becoming the main down-

regulator of the PI3K pathway. When PTEN is 
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inactivated, the PI3K/Akt-mediated signalling 

cascade pathway is unchecked and causes 

uncontrolled cell growth and proliferation. The 

main effect of PTEN is its lipid-

dephosphorylating property [2, 3]. 

Location of PTEN Protein 

PTEN was thought to be localized to 

primarily the cellular cytoplasm but recent 

studies have confirmed its presence in 

subcellular compartments like mitochondria, 

nucleus and even in extracellular tissue spaces. 

In the cytoplasm, apart from its role in the 

inhibition of the PI3K/AKT pathway, PTEN 

also has a role in promoting apoptosis. Nuclear 

PTEN plays a vital role in maintaining 

chromosome integrity, DNA repair 

mechanisms, cell cycle regulation and genomic 

stability [4]. 

Regulation of PTEN Protein Function 

Regulation of PTEN protein function occurs 

mainly by protein-protein interactions and post-

translational modifications. However, it is 

important to note that new ways of regulation 

may also exist owing to the presence of PTEN 

in various cellular as well as extracellular 

compartments [5]. 

Metabolic Role of PTEN 

Apart from its role in cell growth and 

signalling as a negative regulator, recent studies 

have shown that PTEN also plays a key role in 

metabolic pathways. Loss of PTEN function 

leads to tumorigenesis in humans. However 

recent studies indicate that loss of PTEN 

influences glucose metabolism and finally 

improves insulin sensitivity. In addition to this, 

the PI3K/Akt signalling pathway promotes 

lipid synthesis by activating SREBP-1(Sterol 

Regulatory Element Binding Protein -1), which 

increases the expression of key enzymes 

involved in de novo lipogenesis. In the context 

of PTEN loss, this pathway becomes 

overactive, leading to excessive lipid 

accumulation [6]. 

Other Important Functions 

Evidence suggests that PTEN expression is 

regulated by transcription factors responsible 

for epithelial-mesenchymal transition (EMT). 

Also, PTEN has regulatory functions in various 

signalling pathways involved in EMT, 

metastasis and modulation of the tumour 

microenvironment. (Fedorova et al) 

Interestingly, PTEN also regulates the 

development and maintenance of Cancer Stem 

Cells (CSC) by affecting various signalling 

pathways like NOTCH, WNT, NF-kB, 

PI3K/AKT and MAP kinase pathway [7]. 

Germline Mutations of PTEN 

Tumor syndromes such as Cowden 

syndrome, and PHTS (PTEN hamartoma tumor 

syndrome) show germline mutations in the 

PTEN gene. PHTS also includes individuals 

with Bannayan Riley Ruvalcaba (BRRS) 

Proteus and Proteus-like syndromes with 

germline mutation of the PTEN gene. Studies 

have shown that individuals with PHTS have a 

high risk of malignancies in the breast, thyroid, 

kidney, and colon along with an increased risk 

for melanoma [8]. 

The Roles of PTEN in Various Biological 

Processes are Still to be Explored 

PTEN Gene in Various Cancers 

PTEN gene alterations are frequently found 

in Endometrial cancers, glioblastoma, skin and 

prostatic carcinomas. Nearly forty-five per cent 

of endometrial carcinomas show PTEN gene 

alterations and most of them are missense 

substitutions. Endometrial carcinomas are 

classified as type 1 and type 2. While Type 1 

endometrial carcinomas are associated with 

alterations involving PTEN, KRAS, and 

PI3KCA genes to name a few, Type II 

endometrial carcinomas usually show 

involvement of the P53 gene. In other 

gynecological cancers too, PTEN gene 

alterations like missense, and nonsense 

substitutions are seen, but the percentage is 

much lesser [9]. 



Glioblastoma (GBM) shows PTEN gene 

alterations commonly and most of them are 

missense mutations involving the phosphatase 

domain and truncating mutations which are 

mostly seen in the C2 domain. The study by 

Choi et al suggested that a PTEN mutation is 

more disastrous when compared to a PTEN 

deletion in a malignancy [10]. In Breast cancer, 

PTEN gene SNPs have been implicated in 

Breast cancer susceptibility, chemotherapeutic 

response as well as prognosis [11]. 

Single Nucleotide Polymorphisms (SNPs) 

Single Nucleotide Polymorphisms are the 

most common genomic alteration that occurs in 

the human genome. In SNP, there is a 

substitution of one base of a DNA nucleotide. 

SNPs can occur at different locations of the 

gene, such as exon, intron, UTR, promoter 

regions, etc. SNPs situated in the coding 

regions i.e., exons, are called Non-Synonymous 

and Synonymous coding SNPs. Missense SNP 

is a type of Nonsynonymous SNP (nsSNP), and 

it causes an amino acid substitution leading to a 

potential alteration in the protein product, its 

structure and even function [12, 13]. 

This study aims to use computational 

bioinformatics tools to analyze various 

missense SNPs of the PTEN gene classify them 

into tolerated SNPs and identify the potentially 

disease-causing ones. 

Objectives 

To use bioinformatics tools such as SIFT, 

POLYPHEN, CADD, META LR and 

MUTATION ASSESSOR to analyze SNPs of 

the PTEN gene and to classify them into 

disease-causing ones and neutral ones. To 

identify the protein-protein interactions of 

PTEN protein using the String database. 

Materials and Methods 

Ethics and Consent 

The study is a secondary analysis of human 

genomic data and does not meet the criteria of 

human experiments. 

Inclusion Criteria 

The missense SNPs in the PTEN gene for 

which the SIFT, POLYPHEN, CADD, META 

LR, and MUTATION ASSESSOR scores were 

available were included in this study. 

Exclusion Criteria 

Missense SNPs for which scores were not 

available were not included in the study. The 

number of such SNPs was, however, mentioned 

in the results section. 

Methodology 

Retrieval of SNP Data 

The following steps were followed to 

retrieve data regarding missense SNPs from the 

Ensembl database (in the public domain). 

1. After entering into the ensemble database, 

the human PTEN gene was selected, 

followed by selecting the menu 

‘VARIANT TABLE’. 

2. In the variant table, filters were applied and 

only data about 5 in-silico tools i.e., SIFT 

CLASS’, ‘POLYPHEN CLASS’, ‘CADD 

CLASS’, ‘META LR CLASS’, 

‘MUTATION ASSESSOR CLASS’ were 

selected along with the rs IDs 

3. Also, in the ‘CONSEQUENCES’ menu, 

filters were applied for all except Missense 

SNPs. 

The entire data was exported to a CSV file 

and then into Microsoft Excel for data analysis. 

The data was analyzed using IBM SPSS 

software version 20 and expressed as 

descriptive statistics. 

Statistical Analysis 

The following in-silico tools were used: 

SIFT (Sorting Intolerant from Tolerant) 

Sorting Intolerant from Tolerant is a software 

tool used in bioinformatics to assess the 

functional significance of missense mutations 

in proteins. SIFT predicts whether a particular 

amino acid substitution will be tolerated or not 

by the protein. Tolerated Mutation: If the SNP 



has a high probability of being tolerated (score 

>0.05), it suggests that the SNP is unlikely to 

cause a significant impact on protein function. 

Intolerated Mutation: If the SNP has a low 

probability of being tolerated (SIFT score 

<0.05), it suggests that the SNP may disrupt 

protein function and could be pathogenic. 

POLYPHEN 

Polyphen is yet another tool used to predict 

the impact of missense SNPs as probably 

damaging, possibly damaging or benign. The 

score ranges from 0 to 1. 

CADD (Combined Annotation Dependent 

Depletion) 

The CADD score ranges from 0 to 99 where 

higher scores indicate a greater chance that a 

variant is deleterious. CADD v1.7 integrates 

various features to enhance the accuracy of 

these predictions across different molecular 

functions. 

META LR 

Meta LR is a logistic regression-based 

scoring system that ranges from 0 to 1 where 

the higher the values, the more the chance that 

the variant is disease-causing. This prediction 

score has 10 other scores incorporated into it. 

MUTATION ASSESSOR 

Like the other tools above, the mutation 

assessor also predicts the impact of amino acid 

substitution on the structure as well as the 

function of human protein. This score ranges 

from 0 to 1 with higher values indicating the 

deleterious nature of the variant. STRING 

analysis of PTEN protein was done using the 

data from the STRING database which revealed 

the protein-protein interactions of PTEN with 

other proteins. 

Results 

In the present study, a total of 8298 missense 

SNPs were retrieved and 5 silico tools were 

used to analyze the SNPs. The results obtained 

are as follows. 

SIFT 

Table 1. Evaluation of Missense SNPs Using SIFT 

SIFT_CLASS Frequency Per cent 

Not available 2 0.0 

Deleterious 5281 63.6 

Tolerated 3015 36.4 

Total 8298 100.0 

Table 1 shows the functional impact of 

missense SNPs using the sequence homology 

tool SIFT (Sorting Intolerant from Tolerant). 

Out of the 8298 missense SNPs studied, 5281 

were deleterious, and 3015 were tolerated. 

Values were not available for 2 SNPs. This 

indicates that SIFT categorizes most missense 

variants as deleterious, with a smaller 

proportion as tolerated, and very few cases 

where predictions were unavailable. 

Polyphen 

Table 2. Evaluation of Missense SNPs Using POLYPHEN  

POLYPHEN_CLASS Frequency Per cent 

Not available 2 0.0 

Benign 3735 45.0 



possibly damaging 1244 15.0 

probably damaging 3246 39.1 

Unknown 71 0.9 

Total 8298 100.0 

Table 2 summarizes the classification of 

missense variants analyzed by the PolyPhen 

(Polymorphism Phenotyping) tool, which 

predicts the functional impact of amino acid 

substitutions based on structural and 

evolutionary information. Out of the 8298 

missense SNPs analysed using POLYPHEN, 

3735 were benign, and 4490 were damaging. A 

smaller portion of variants falls into the 

‘possibly damaging’ category, suggesting they 

might impact protein function, but the evidence 

is not very strong. Values were unavailable for 

73 SNPs. 

CADD 

Table 3. Evaluation of Missense SNPs Using CADD 

CADD_CLASS Frequency Per cent 

Not available 16 0.0 

likely benign 7373 88.9 

likely deleterious 909 11.0 

Total 8298 100.0 

Table 3 summarizes the classification of 

missense variants analyzed by the CADD 

(Combined Annotation Dependent Depletion) 

tool, which provides a scaled score to predict 

the deleteriousness of genetic variants. CADD 

analysis of missense SNPs of the PTEN gene 

shows that the majority of SNPs (7373 SNPs) 

were likely benign, indicating they are unlikely 

to have harmful effects whereas 909 were likely 

deleterious with disease-causing potential. 

META LR 

Table 4. Evaluation of Missense SNPs Using META LR 

META_LR_CLASS Frequency Per cent 

Not available 37 0.4 

Damaging 2995 36.1 

Tolerated 5266 63.5 

Total 8298 100.0 

Table 4 provides a summary of the 

classification of missense variants analyzed by 

the MetaLR (Meta Logistic Regression) tool, 

which combines predictions from multiple 

algorithms to assess the functional impact of 

genetic variants. Meta LR analysis of the SNPs 

shows that 2995 were identified as damaging 

and 5266 as tolerated, indicating that they are 

not likely to be harmful. 

MUTATION ASSESSOR 



Table 5. Analysis of Missense SNPs Using Mutation Assessor 

Mutation_assessor_class Frequency Per cent 

Not available 39 .5 

High 897 10.8 

Low 2774 33.4 

Medium 2906 35.0 

Neutral 1682 20.3 

Total 8298 100.0 

Table 5 summarizes the classification of 

missense variants analyzed by the Mutation 

Assessor tool. This tool predicts the functional 

impact of variants based on evolutionary 

conservation and structural properties of 

proteins. The analysis of the 8298 missense 

SNPs using the Mutation assessor tool was 

done. This tool categorizes the SNPs into low, 

medium and high risk.897 SNPs were of high-

risk type and 2906 of medium risk. 

String Analysis of PTEN Protein 

 

Figure 1. Network of Protein-Protein Interactions of PTEN Gene Generated by the String Database 

This analysis using string (Fig 1) was done 

to understand the protein-protein interactions of 

the PTEN protein using the STRING database. 

It reveals the PTEN protein at the centre of the 

network. Surrounding the PTEN protein are the 

remaining proteins that interact with PTEN. 

The colored circles are called nodes, which are 

the proteins in this network and the colored 

lines are called edges, which indicate that there 

is evidence of interaction between the 

proteins(nodes). The green lines indicate co-

expression, the purple line indicates 

experimentally determined interaction, the pink 

or red line indicates the actual biochemical 

signaling pathway interaction, and the blue 

lines indicate curated interactions from 

database sources. 

The number of nodes was 11, the edges were 

30 (expected edges,22), the average node 

degree was 5.45 and average local clustering 

coefficient value was 0.821 and the PPI 

enrichment p-value was found to be 0.0551. 



Discussion 

Missense Single Nucleotide Polymorphism 

is a type of ns SNP and is characterized by an 

amino acid change that has the potential to form 

a mutated protein with an alteration in its 

structure or function. This can cause many 

diseases. This deleterious change in the protein 

is by alteration of various properties of proteins 

such as decreased protein solubility, 

destabilizing of its tertiary structure, etc. The 

clinical consequence of each missense SNP can 

be done by conducting wet-lab experiments but 

can be tedious and time-consuming. Using a 

silicon approach to analyse these SNPs would 

help in identifying the deleterious ones [14]. 

This study shows the computational analysis 

of various SNPs on the deleteriousness of the 

PTEN gene. As per SIFT, the score for 

deleterious SNP is less than 0.05. A score of 

more than 0.05 indicates that the SNP is 

tolerated. Polyphen divides the prediction 

scores into three categories and they are 

Benign, possibly damaging and probably 

damaging. The scores of polyphenol range from 

0 to 1. If the score is between 0.9 and 1, then 

that missense SNP comes under the category of 

‘probably damaging’. A score of 0.4 to 0.8 

comes under possibly damaging and others 

come under the ‘Benign’ category [15]. In the 

present study, out of the 8298 polymorphisms 

analysed, 5281 were found to be deleterious. 

CADD (Combined Annotation Dependent 

Depletion) is also another in-silico tool for 

estimating the deleterious nature of SNPs as 

well as insertions and deletions in the genome. 

It is built with nearly 60 genomic features and 

uses a machine-learning algorithm model. A 

higher score points towards the deleteriousness 

[16]. In the present study, as per CADD scores, 

909 SNPs were likely deleterious. 

Meta LR integrates nine independent 

deleteriousness scores using a logistic 

regression model to predict the deleterious 

nature of missense SNPs [17]. Analysis of the 

PTEN missense SNPs in the present study by 

Meta LR revealed 2995 damaging variants and 

5266 tolerated ones. 

MUTATION ASSESSOR was designed by 

the Memorial Sloan Kettering Cancer Centre in 

2011, and this tool helps distinguish between 

high, medium and low-risk variants. It uses 

information from the sequence homology of 

protein families and subfamilies between the 

species and also within the species. [1]. The 

present study showed that there were 897 high-

risk, 2906 medium-risk and 2774 low-risk 

SNPs. In the study by Khan et al., an analysis 

of 35 significant ns SNPs of the PTEN gene was 

conducted, and among them, five ns SNPs were 

found to be deleterious. The study used 

computational predictive tools and molecular 

dynamics simulations in their methodology 

[18]. 

Impact of SNPs in the PTEN Gene on 

Specific Cancers 

The results in the study by Naidu CK et al, 

three deleterious nSNPs rs121909218 (G129E), 

rs121909229 (R130Q), and rs57374291 

(D107N) were analyzed using computational 

tools and the results indicated their role in 

change of stability of PTEN protein. These 

SNPs were associated with breast cancer 

phenotype [19]. 

In a meta-analytical study done by Song D et 

al, two SNPs in the PTEN gene namely 

rs701848 (CC) and rs2735343 (GG) 

polymorphisms were analyzed and they were 

reported to be associated with an increased risk 

of cancer [20]. The study by Han et al suggested 

that PTEN rs3830675 SNP was linked to 

colorectal carcinomas in those patients who had 

habits of smoking and alcohol consumption 

[21]. 

The study by Andreassen KE et al showed 

that the SNP in PTEN gene i.e., rs11202586 

showed association with Testicular Germ Cell 

tumors [22]. 



Interpretation of String Analysis of 

PTEN Protein 

In the string analysis, 30 edges were seen as 

compared to the expected number of 22 and this 

suggests a stronger connection than expected. 

The average node degree indicates that each 

node (protein) in the network interacts with an 

average of 5.45 nodes and this points towards a 

relatively well-interconnected network. An 

average Local Clustering Coefficient value of 

0.821 implies strongly that it is a well-

interconnected network with many formed 

triangles. This p-value (0.0551) suggests the 

probability that the observed connections 

occurred by chance. Still, this near-significant 

enrichment suggests the dataset's structure is 

not entirely random and warrants further 

exploration for underlying patterns or 

functional relationships. 

Conclusion 

In-silico analysis is a useful computational 

technique to assess the deleterious nature of 

SNPs. In this study, the potential disease-

causing polymorphisms of PTEN genes were 

identified that can drive further studies. 

Outcomes of the Study 

This study gives an insight into the potential 

pathogenic SNPs of the PTEN gene, and this 

can help in driving further experimental 

research. The advantage of this analysis is that 

polymorphisms that are unlikely to cause 

diseases can be identified and avoided while 

considering future research. 

The Rationale of the Study 

The rationale behind the study is to predict 

the effect of various polymorphisms on protein 

function. This computational analytic method 

helps to assess the potential impact of missense 

SNPs on PTEN protein structure and function 

as these SNPs cause amino acid substitutions. 

PTEN is a key tumour suppressor gene that 

plays an important role in cell growth and 

survival. Utilizing these computational 

methods together also helps in identifying 

disease-causing variations and prioritizing the 

SNPs for functional validation studies. 

Limitations of the Study 

Though computational analysis generates 

predictions about gene functions and pathways, 

it requires further validation by experimental 

research. Moreover, these in silico tools don't 

account for specific phenotypic or clinical 

outcomes. Also, Epigenetic modifications and 

post-translational modifications are not taken 

into consideration. Further research can be done 

to overcome limitations by using clinical 

databases and population databases to cross-

check predictions for known pathogenic 

variants. 
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