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Abstract 

One of the most important tasks to predict the structure of proteins is Protein Remote Homology 

Detection and Fold Recognition. To do this, a Hierarchical Attention-based Convolutional Neural 

Network with Bidirectional Long Short-Term Memory called the HACBLalign algorithm was 

proposed by the authors, which performs Multiple Sequence Alignments (MSAs), extracts features, 

and recognizes protein homologies. But, when the quantity of Protein Sequences (PSs) increases, the 

number of times the decision-making system runs also increases. To avoid this issue, this article 

proposes an Enhanced HACBLalign (EHACBLalign) method using Transitional Pattern Search (TPS) 

and pre-trained classification for Protein Remote Homology Detection and Fold Recognition. During 

the alignment stage, the intermediate sequences such as Hit Regions (HRs) are identified by the TPS. 

Then, the HRs are extended in middle layers and utilized as a query in all TPS iterations. Besides, the 

HACBLalign algorithm is applied in all intermediate layers for generating pairwise alignments. 

Moreover, each pairwise alignment between intermediate sequences is merged to get the final 

alignment. Further, various characteristics are obtained from the chosen alignment and learned by 

the pre-trained Convolutional Neural Network (CNN) with a softmax function for recognizing protein 

remote homologies precisely. This enhances the performance of the decision-making system for large-

scale PS databases. Finally, the test outcomes exhibit that the EHACBLalign realizes a 94.6%, 

94.1%, and 93.4% accuracy on SCOP 1.53, SCOP 1.67, and superfamily corpora, respectively in 

Protein Remote Homology Detection and Fold Recognition. 

Keywords: Convolutional Neural Network (CNN), Fold Recognition, HACBLalign, MSA, Protein 

Remote Homology, Transitional Pattern Search. 

Introduction 

Protein Remote Homology Detection and 

Fold Recognition is a term used in 

bioinformatics to describe the classification of 

proteins into morphological and chemical 

categories. It may be utilized to discover the 

3D shape and activity of molecules in both 

basic investigations and therapeutic 

applications [1]. Because of the small 

homogeneity of PSs, amino genome 

sequencing has trouble discovering remote 

homologies of proteins. Sequence-based, 

ranking-based, and discriminative-based 

approaches are the majority of the standard 

predictors. The homology of amino acids can 

be assessed by sequence-based alignment 

methods [2, 3]. The effectiveness of 

correlation estimation could be improved by 
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Hidden Markov Model (HMM)-based 

strategies [4]. 

It is possible to estimate protein homologies 

using a probabilistic method with the help of 

the HMMER software package [5]. Ranking 

methods/models that use correlation 

coefficients to determine rankings calculate 

the homology proximity between the 

nucleotides. ProtEmbed, RankProp, and other 

well-known ranking methods are also 

available [6]. Motifs are essential to protein 

morphologies to calculate correlation 

coefficients. MotifCNN and MotifDCNN are 

two traditional motifs-based feature extraction 

schemes [7]. According to the ground truth 

labels of the protein families, the supervised 

training paradigm utilized by the classification 

approaches could be transformed into a binary 

classification. Profile-based traits like profile 

kernel, All Fixed-width subsequences with 

PSSM, and the Smith-Waterman algorithm 

PSSM improve detectability [8]. Two kernels 

for SW-PSSM are values for profile-profile 

correlation and values for sequence similarity 

[9]. Compared to existing approaches, 

classification methods produce cutting-edge 

outcomes. 

Classification methods/models may swiftly 

combine various nucleotide sequence features 

and understand the relevant information from 

both true and false examples in a particular 

dataset, in contrast to pairing strategies and 

generation strategies. A crucial prerequisite of 

classification approaches is the need for 

features extracted with fixed lengths as input. 

ReFold-MAP, a unique classification approach 

that yields complete traits by the three separate 

profile-based properties of motif-PSSM, ACC-

PSSM, and Physicochemical Distance 

Transformation (PDT)-profile for MSAs, has 

been created in light of such viewpoints [10]. 

The morphological motif kernel data, the 

genetic data, and the nucleotide sequences are 

together referred to as MAP traits. Moreover, 

the Support Vector Machine (SVM) algorithm 

used this characteristic vector to identify 

remote protein homologies. Nonetheless, the 

accuracy of the sequence alignment is 

inconsistent, making it difficult for the 

traditional MSA-based algorithms to produce 

correct alignments. Therefore, integrated 

methods/models are still required to get 

perfect PS alignments. 

To combat these problems, a novel 

progressive deep MSA algorithm was 

developed, which creates highly appropriate 

decision-making model MSA of low similarity 

protein families [11]. This algorithm uses a 

decision-making system that has been trained 

by the HACBLalign to gradually align the PSs 

by calculating multiple posterior probability 

matrices. By combining the alignment of 

crucial subsequences into a sequence 

alignment, this algorithm gradually creates a 

global alignment. Additionally, the attention 

layers enable this algorithm to pick sequences 

and subsequences that are qualitatively 

essential. As a consequence, an enhanced 

MSA was produced. The top-N-gram and 

Auto-Cross-Covariance (ACC) characteristics 

were retrieved from aligned PSs using the 

Position-Specific Scoring Matrix (PSSM). 

Moreover, those characteristics were classified 

by the CNN with a softmax function to 

identify protein homologies. However, the 

alignment efficiency degraded while 

increasing the quantity of PSs. If many PSs 

were acquired, then multiple sequence pairs 

were also acquired; as a result, the sum of 

epochs the decision-making system trains was 

increased. 

Therefore, an Enhanced HACBLalign 

(EHACBLalign) method is proposed in this 

paper to decrease the sum of epochs the 

decision-making system trains for a large 

number of PSs. In this algorithm, the TPS is 

adopted for achieving appropriate alignment 

generation by detecting the intermediate 

sequences. During the alignment generation 

stage, a method is proposed that extends the 

HR recognized using the TPS and is 

considered as a query in every iteration of the 



TPS. In addition, the HACBL align algorithm 

is applied in all intermediate layers for 

generating pairwise alignments. Moreover, 

each pairwise alignment between intermediate 

sequences is merged to get the final alignment, 

which is used to extract various characteristics. 

Further, the CNN with a softmax function pre-

trained by the BERT model is applied for 

learning the extracted characteristics and 

recognizing protein remote homologies 

precisely. Thus, this algorithm enhances the 

efficiency of Protein Remote Homology 

Detection and Fold Recognition by 

appropriately generating alignments of many 

PSs and enhancing the decision-making 

system. 

A novel sequence alignment creation 

method using the k-nearest Neighbor (kNN) 

algorithm for predicting protein structures. 

The substitution scores at all residue pairs 

were predicted rather than the predetermined 

substitution matrix. Besides, a scheme was 

adopted to transform pairwise arrangements to 

statistical vectors of latent space to predict the 

PS pattern. Moreover, the estimated values 

were utilized to create arrangements for 

template-based modelling. However, it needs a 

long execution period due to the kNN 

algorithm and database dimension [12]. 

A novel DeepMSA that comprises 

homologous PSs and arrangements generated 

from multiple sources of full and meta-

genome corpora via complementary HMM 

algorithms. The DeepMSA was initially used 

to create MSAs for residue-level connection 

estimation using multiple coevolution and 

deep learners. Then, many threading methods 

were executed for homologous structure 

recognition and the DeepMSA has been 

utilized for secondary pattern estimation. 

However, it did not often provide an efficient 

connection estimation because the absolute 

impact of MSAs was a balance of arrangement 

exposure and precision [13]. 

A neural net to obtain precise estimations of 

the gaps among a couple of residues that take 

additional data regarding the pattern compared 

to the connection estimation. Based on this 

data, a latent average force was built, which 

precisely defines the protein structure, and the 

resultant potential was optimized by gradient 

descent to create patterns with no multifaceted 

sampling processes. However, it needs further 

enhancements to properly predict unknown 

sequence structures [14]. 

A Novel Deep-learning Threader 

(NDThreader) method using Deep 

Convolutional Residual Neural Fields (DRNF) 

to arrange a query PS to prototypes without 

considering distance data. After that, the 

Alternating Direction Method of Multipliers 

(ADMM) was used to enhance pattern-

prototype arrangements using the estimated 

gap latent [15]. Moreover, 3D frameworks 

were created from a pattern-prototype 

arrangement by providing it and pattern 

coevolution data into the ResNet for 

estimating inter-atom gap distribution that was 

passed to PyRosetta for 3D framework 

creation. However, the problem was that many 

basic units were executed separately, which 

may have impacted the modelling accuracy. 

A multi-task Deep learning Distance 

(DeepDist) estimator depending on novel 

ResNet models to concurrently estimate true 

inter-residue gaps and categorize them into 

several gap periods. However, it was not 

effective according to the MSE of the 

estimated gap [16]. An ensemble model to 

solve the function prediction by automatically 

allocating Gene Ontology (GO) expressions to 

the PS. In this model, the GO predictions 

created by random forest and neural network 

categorizers were combined. However, 

training a neural network was difficult and it 

needed to choose the relevant features for 

increasing efficiency [17]. 

An enhanced CASP14 MULTICOM 

protein structure prediction framework by 

integrating different novel modules: (i) a novel 

deep learner-based PS inter-residue gap 

estimator to enhance prototype-free tertiary 



pattern estimation, (ii) an improved prototype-

based tertiary pattern estimation method, and 

(iii) gap-related efficiency analysis schemes 

enabled by the deep learner. However, its 

efficiency relies on the efficiency of deep 

leaning-based residue-residue gap estimation 

that in turn relies on the efficiency of MSA 

[18]. A unified method called US-align2, 

executes sequential alignment, semi-non-

sequential alignment, and fully non-sequential 

arrangement for PSs by a single rating factor. 

However, it did not take conformational 

dissimilarities among a couple of correlated 

patterns [19]. Profile-based direct kernels for 

remote homology detection and fold 

recognition [20]. The effectiveness of motif 

kernels generated by genetic programming for 

improving remote homology and fold 

detection [21]. The classification of protein 

structures in the SCOP database [22]. BERT, a 

deep bidirectional transformer model for 

enhanced language understanding [23]. 

Proposed Methodology 

This section explains the EHACBLalign 

algorithm briefly. Fig.1 illustrates the 

architecture of the proposed Remote 

Homology Detection and Fold Recognition. 

 

Fig. 1. Architecture of Proposed EHACBLalign Method for Protein Remote Homology Detection and Fold 

Recognition 

Dataset Description 

In this work, three benchmark datasets, 

namely the SCOP v1.53, SCOP v1.67, and the 

superfamily corpus are acquired to assess the 

effectiveness of selective MSA algorithms. 

The SCOP v1.53 corpus [20] possesses 4532 

PSs from 54 groups, whilst the SCOP v1.67 

[21] possesses 11037 PSs from 102 groups. 

The superfamily corpus [22] possesses 1195 

folds of 1962 superfamilies. A superfamily is a 

corpus that contains labels for each PS's 

morphological properties. Depending on a 

collection of HM`Ms that represent structural 

protein motifs at the tier of the SCOP 

superfamily, it was built. The labels are 

produced by matching PSs from 

approximately 2478 fully sequenced genomes 

to HMMs. 

Improved MSA Generation 



In this work, the TPS method is used, which 

explores homologs of the query PS, and 

simultaneously utilizes the outcomes as fresh 

queries to identify protein remote homologs. 

The MSA generation is improved by two 

processes. Initially, a sub-area of the given PS 

is utilized as intermediary outcomes, which are 

considered as the successive query rather than 

considering the entire PS of the given 

homolog. Several PSs in the corpora have 

many domains within a single sequence; so, 

False Positives (FPs) are acquired since the 

fields that are not associated with the query PS 

are taken as successive queries in transitional 

explorations. By reducing the exploration 

space to a given homology area, it is projected 

that the sum of FPs can be minimized. Then, 

rankings to the outcomes are allocated via the 

calculation of relationships among 

intermediary PSs. The relationships are 

determined in the TPS. In this method, the 

relationship values on the route from the query 

to the absolute hits are summed and ranked to 

create absolute exploration outcomes. When 

many routes occur between the query and the 

absolute hit, the route having the optimal value 

is chosen. The value is utilized as a 

relationship value and the route of the 

minimum value is chosen as the optimal. 

An outline of the TPS method is depicted in 

Fig. 2, wherein violet, yellow, and green 

circles symbolize the query, intermediary, and 

hit PSs, correspondingly. Initially, homologs 

of the query PS in the intermediary corpus are 

searched and the resultant hits define the initial 

intermediaries. Then, such hits are utilized as 

queries and the consecutive sequence of hits 

defines the next intermediaries. Finally, such 

intermediaries are utilized as queries and the 

absolute corpus is explored. Here, the hit value 

is determined by the sum of all hit values. 

 

Fig. 2. Outline of Transitional Sequence Search 

However, it is complex to create 

arrangements among remote homologs since 

the pattern uniqueness among them is always 

less. Though pairwise alignments are created, 

the dimension of the arrangement area is 

extremely tiny for proper alignment, resulting 

in improper recognition of protein homology 

structure. This issue is resolved by using 

intermediate sequences identified by the TPS. 

During the TPS stage, it utilizes only arranged 

pattern areas, whereas other fields are not 

utilized for the exploration. The HR's are 

extended to the intermediary layers to extend 

the aligned region to the degree to be likely 

that they do not involve other fields 

excessively. The dimension of the extension is 

one of the hyperparameters. The extended sub-

sequence is taken as a query in all transitional 



searches. In all intermediary layers, pairwise 

arrangements are created by the HACBLalign. 

At the last stage of arrangement formation, 

this method combines pairwise arrangements 

among intermediary PSs. All sub-pairwise 

alignments are conserved that define the 

locations of residues in a pairwise arrangement 

are conserved. A pairwise arrangement 

between the query PS and one of the absolute 

hits is partitioned from the combined 

arrangement. 

An outline of the proposed alignment 

formation method is illustrated in Fig. 3, 

wherein a pairwise alignment is created in all 

intermediate layers. Also, each pairwise 

alignment between intermediate sequences is 

combined and conserved. 

 

Fig. 3. Alignment Formation with Intermediate Sequences 

Once the final alignment is acquired, top-N-

gram and ACC-PSSM features are extracted 

[11]. Those extracted features are further 

learned by the pre-trained CNN with a softmax 

function for creating a trained model. 

Pre-learned CNN Model for Protein Remote 

Homology Detection and Fold Recognition 

For recognizing protein homologies, pre-

learned CNN with softmax classifier is 

applied, which encompasses both learning and 

testing procedures. In the learning procedure, 

CNN is trained by randomly initialized 

weights. If the CNN is learned in an 

unsupervised manner like in the BERT model 

[23] could aid deep supervised training and 

enhance the efficacy of Remote Homology 

Detection and Fold Recognition. While 

utilizing the pre-learned CNN for Protein 

Remote Homology Detection and Fold 

Recognition, merely the variables of the last 

layer are set arbitrarily and each other variable 

is set to the pre-learned weights (as shown in 

Fig. 4). So, the feature vectors and tags from 

the training sequences are learned by the pre-

learned CNN model. During the test process, 

the test sequences are transformed into the 

TAF vectors by a similar procedure to the 

learning sequences and recognized via the 

learned model. 



 

Fig. 4. Pre-trained CNN Model for Remote Homology Detection and Fold Recognition 

Results 

This part assesses the success of this 

EHACBLalign-TAF algorithm applied to the 

three distinct datasets using MATLAB 2019b. 

In this analysis, 70% of the PSs are used in the 

learning phase and 30% of the PSs are used in 

the test phase. The measured values are 

compared to that of previous algorithms: 

ReFold-MAP [10], HACBLalign-TAF [11], 

DeepMSA [13], NDThreader [15], DeepDist 

[16], and US-align2 [19] in terms of the 

following metrics. 

It specifies the proportion of correctly 

identified protein homologies to all PSs 

examined. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

For SCOP 1.53, SCOP 1.67 and 

Superfamily datasets, the accuracy of 

EHACBLalign – TAF is 94.6%, 94.1% and 

93.4% receptively which is higher when 

compared with well-known models/methods 

as shown in Fig. 5. 

Accuracy 

 

Fig. 5. Comparison of accuracy for proposed and existing Protein Remote Homology Detection and Fold 

Recognition Models /Methods over SCOP 1.53, SCOP 1.67 and Superfamily Data Sets 



Precision 

It specifies the percentage of perfectly 

aligned locations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

For SCOP 1.53, SCOP 1.67 and 

Superfamily datasets, the precision of 

EHACBLalign – TAF is 94.3%, 93.9% and 

94.2% respectively which is higher when 

compared with well-known models/methods 

as shown in Fig. 6. 

 

Fig. 6. Comparison of Precision for proposed and Existing Protein Remote Homology Detection and Fold 

Recognition Models /Methods over SCOP 1.53, SCOP 1.67 and Superfamily Data Sets 

Recall 

It specifies the proportion of precisely 

aligned residues among those that are aligned. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

For SCOP 1.53, SCOP 1.67 and 

Superfamily datasets, the recall of 

EHACBLalign – TAF is 94.47%, 94.5% and 

94.4% respectively which is higher when 

compared with well-known models/methods 

as shown in Fig. 7. 

F – Measure 

It defines the f-measure of proposed and 

existing Protein Remote Homology Detection 

and Fold Recognition techniques. 

F measure =
2 x Precision x Recall

precision + recall
 

 

Fig. 7. Comparison of Recall for Proposed and Existing Protein Remote Homology Detection and Fold 

Recognition Models /Methods over SCOP 1.53, SCOP 1.67 and Superfamily Data Sets 



 

Fig. 8. Comparison of F-Measure for Proposed and Existing Protein Remote Homology Detection and Fold 

Recognition Models /Methods over SCOP 1.53, SCOP 1.67 and Superfamily Data Sets 

For SCOP 1.53, SCOP 1.67 and 

Superfamily datasets, the F-measure of 

EHACBLalign – TAF is 94.39%, 94.2% and 

94.4% which is higher when compared with 

well-known models/methods as shown in Fig. 

8. 

Receiver Operating Characteristics (ROC) 

and ROC50 Curve 

The ratio between specificity and sensitivity 

is set by the ROC value. Within the 

normalized Area Under the Curve (AUC), it 

compares TP Rates (TPRs) and FP Rates 

(FPRs). The ROC50 value, in a similar vein, is 

the region of the ROC curve up to 50 FPs. By 

calculating the TPR and FPR as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

Fig. 9. Comparison of ROC and ROC 50 Curves for Proposed and Existing Protein Remote Homology 

Detection and Fold Recognition Models / Methods over SCOP 1.53 Dataset 

Fig. 9 (a) and (b) depict the ROC and 

ROC50 values of various Remote Homology 

Detection and Fold Recognition methods 

tested on the SCOP 1.53 datasets. It indicates 

that the ROC of EHACBLalign-TAF is 

significantly larger than those of US-align2, 

DeepMSA, DeepDist, NDThreader, ReFold-

MAP, and HACBLalign-TAF. Similarly, the 

ROC50 of EHACBLalign-TAF is markedly 

superior to those of US-align2, DeepMSA, 

DeepDist, NDThreader, ReFold-MAP, and 

HACBLalign-TAF. 



 

Fig. 10. Comparison of ROC ROC 50 curves for Proposed and Existing Protein Remote Homology Detection 

and Fold Recognition models / Methods over SCOP 1.67 Dataset 

Fig. 10 (a) and (b) present the ROC and 

ROC50 values of various Protein Remote 

Homology Detection and Fold Recognition 

methods tested on SCOP 1.67 datasets. The 

results indicate that EHACBLalign-TAF 

outperforms US-align2, DeepMSA, DeepDist, 

NDThreader, ReFold-MAP, and 

HACBLalign-TAF in both ROC and ROC50 

metrics. EHACBLalign-TAF achieves higher 

ROC and ROC50 values compared to these 

methods, demonstrating its superior 

effectiveness in remote homology detection 

and fold recognition. 

 

Fig. 11. Comparison of ROC and ROC Curves for Proposed and Existing Protein Remote Homology 

Detection and Fold Recognition Models / Methods over Superfamily Dataset 

Fig. 11 (a) and (b) demonstrate the ROC 

and ROC50 values of various Protein Remote 

Homology Detection and Fold Recognition 

methods tested on the superfamily corpus. The 

results show that EHACBLalign-TAF 

achieves higher ROC and ROC50 values 

compared to US-align2, DeepMSA, DeepDist, 

NDThreader, ReFold-MAP, and 

HACBLalign-TAF. Specifically, 

EHACBLalign-TAF surpasses these methods 

in ROC and ROC50 metrics, highlighting its 

enhanced performance in remote homology 



detection and fold recognition. These 

improvements are attributed to advancements 

in multiple sequence alignment (MSA) and the 

decision-making system for Protein Remote 

Homology Detection and Fold Recognition 

using large-scale protein sequences. 

Conclusion 

In this work, the EHACBLalign method 

was designed to reduce the complexity of the 

decision-making system by improving 

Multiple Sequence Alignment and Protein 

Remote Homology Detection and Fold 

Recognition. Finally, the experimental results 

illustrate that the EHACBLalign outperforms 

the benchmark methods in terms of the 

evaluation metrics taken into consideration 

viz, accuracy, precision, recall and F-measure. 

However, it is a challenge that EHACBLalign 

has high complexity because CNN may 

process more uninformative features. 

Therefore, future work is to develop advanced 

CNN models that process more uninformative 

features to enhance Protein Remote Homology 

Detection and Fold Recognition.  
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