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Abstract 

In this contemporary state Natural products play a significant role in drug discovery. This research 

investigates a Curcumin-Iron complex (CuFe) as a potential new weapon against tuberculosis (TB).  

The study highlights the global burden of TB and the need for alternatives due to rising drug resistance. 

Curcumin, a promising compound from turmeric, suffers from poor absorption in the body. The 

researchers created CuFe and confirmed its structure using XRD analysis to address this. Using 

computer simulations, they then tested CuFe's binding to key targets in the TB bacteria. Excitingly, 

CuFe showed superior binding compared to curcumin and existing drugs.  The discussion emphasizes 

the potential of plant-based medicines like curcumin, along with metal complexes, mentioning garlic 

and piperine as further avenues. The authors conclude that CuFe is a promising candidate, but further 

testing in animals and humans, along with studies on absorption and regulatory approval, is needed 

before it can be considered a viable TB treatment. 
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Introduction 

As per World Health Organization, 

Tuberculosis (TB) is an infectious disease 

caused by the Mycobacterium tuberculosis; so 

far, the mortality rate of tuberculosis is 

1.6Million till 2021 from TB in 2021. 87% of 

new TB cases in 2021 were found in the 30 

countries with the highest TB burden rate. Due 

to the possibility of drug resistance, there is still 

a significant gap between the rate of diagnosed 

and recovered patients, even if this treatment is 

effective and millions of individuals are treated 

absolutely [1]. From the ancient days in India, 

people have practiced some forms of herbal 

medicines as a first-line treatment for their 

primary healthcare needs.  Several plants have 

historically been utilized to treat 

Mycobacterium infections due to the existence 

of chemically active bio components that have 

the potential to inhibit the multidrug efflux 

system of microbes. Plant-based medicines 

utilized in Tb control. Traditional medicines 

have several health benefits, from Anti-Oxidant 

to Liver protection [2]. Treating diseases with 

natural medicine therapy is an effective ancient 

practice. In the scenario of robust use of drugs, 

development of multidrug-resistant bacterial 

species, and rising ineffectiveness of available 

medications, natural remedies are growing as 



promising alternatives. Natural medicines bear 

the characteristics of no side effects and ease of 

availability over synthetic drugs. Moreover, 

bioactive moieties from natural cures also 

provide a base formulation for novel drug 

design by chemical modification which aids in 

minimizing the efforts and time required for the 

novel drug discovery [3]. Curcumin from 

turmeric is reported for numerous medicinal 

activities, such as hypoglycemic, 

neuroprotective, cardioprotective, 

hepatoprotective, and many more [4]. This 

property is attributed to the presence of a 

yellow-orange-colored active component, 

curcumin. Curcumin structure contains two 

phenolic rings attached to a carbon chain with a 

hydroxyl group and soluble solvents that are 

slightly nonpolar than water. This solubility 

factor restricts the bioavailability of the 

curcumin leading to low hydrophilicity and 

dissolution rate, common physicochemical 

instability, rapid metabolization, low bioactive 

adsorption, poor pharmacokinetics and 

bioavailability, and low penetration and target 

efficacy. The chemical modification and 

formulation preparation of curcumin structure 

helps to overcome several design-related 

issues. The Nano-formulations of curcumin, 

such as nanoparticles, curcumin stabilized 

metal nanoparticles, Nano-gels, micelles, 

polymers, liposomes, and conjugates were 

found to be efficient for bioavailability and 

targeted therapeutic application [5-7]. The 

effect of a methyl group on the solubility of 

curcumin was revealed upon the demethylation 

of methoxy groups. Various attempts have been 

made to modify the curcumin structure by 

prenylation for HDAC and mPGES-1 

inhibitors, tetrahydroxylation, and, 

pyrimidinone functionalization for 

antiproliferative activity, methylation, and 

Hydroxy group substitution on aryl group for 

enhanced antioxidant activity, thiomethyl 

group for COX-1 selectiveness. The enhanced 

biological activities of chemical curcumin have 

been extensively reviewed. Moreover, 

bioconjugation of curcumin structure with 

biomolecules, specifically with amino acid and 

sugar conjugation, has been shown to enhance 

the antibacterial activity against several 

pathogenic bacteria due to improved solubility, 

increased cellular uptake, and slow metabolism 

[8-11]. Curcumin modification by forming 

metal-ligand complexes also has diverse 

biological applications. The first curcumin 

metal complex with gold was reported for 

antiarthritic studies. The transition metal 

complexes with curcumins are active against 

pathogenic bacteria such as Staphylococcus 

aureus, Escherichia coli, Salmonella typhi, Hay 

bacillus, Pseudomonas aeruginosa and a few 

fungi from Aspergillus family and Penicillium 

verruculosum. Lanthanide series curcumin 

complexes were explored for chemotherapeutic 

applications along with antibacterial activity 

against Escherichia coli and Hay bacillus. The 

metal-curcumin were proposed to act by higher 

penetrating bacterial cell walls than the 

curcumin structure alone [12, 13]. There is 

strong evidence of metals from the ancient 

period Since the Egyptians employed copper to 

sanitize their water and metal compounds in 

medicines. Tremendous works have been 

performed toward the biological coordination 

of metal-augmented agents [14]. In the present 

study, we are exploring the antibacterial 

potential of naturally isolated Curcumin along 

with iron as Curcumin iron complex. 

Materials and Methods 

The curcumin was isolated from Curcuma 

longa as per our previous report[15].  The 

Synthesis of curcumin-iron complex was 

synthesized by following the reported method 

with few modifications. In a typical synthesis 

process, methanolic solutions of curcumin and 

FeCl 3 were mixed dropwise with stirring in a 

2:1 molar ratio. The system was stirred at 60 ºC 

for 15-20 min. The obtained red-brown colored 

precipitate was isolated by centrifugation, 

washed thoroughly with methanol, and dried at 

60 ºC under vacuum [16-18]. 



Molecular Docking Procedure 

The molecular docking method was 

employed to estimate the drug binding ability at 

atomic-level. For this investigation tuberculosis 

inhibition potential of Curcumin Iron Complex, 

a total of eight targets were identified and 

selected. The Molegro Molecular Viewer was 

used to prepare these compounds for 

computational research followed by MMFF4 

force field algorithm has been used to reduce 

the ligand geometry. CB-Dock2 online 

tool[https://cadd.labshare.cn/cb-

dock2/php/index.php] was used in this study for 

the estimation of binding affinity of the 

investigation product and targets [19-21]. The 

3D crystal structures of the selected targets 

were downloaded from RCSB Protein Data 

Bank (RCSB PDB) [https://www.rcsb.org/] 

such as PDB: 4DRE is the crystal structure of 

Mycobacterium tuberculosis InhA in complex 

with NADH [22] PDB: 1BVR is the crystal 

structure of Crystal structure of the 

Mycobacterium tuberculosis enoyl-ACP 

reductase, InhA, in complex with NAD+ and a 

C16 fatty acyl substrate [23]. PDB: 3FNG is 

crystal structure of  InhA bound to triclosan 

derivative [24]. PDB: 4P8C is crystal structure 

of M. tuberculosis DprE1 in complex with the 

non-covalent inhibitor QN127[25] PDB: 5V3Y 

is crystal structure of Mtb Pks13 Thioesterase 

domain in complex with inhibitor TAM16 [26] 

PDB: is crystal structure of ranscriptional 

Regulatory Repressor Protein - EthR from 

Mycobacterium tuberculosis in complex with 

compound 5 at 1.57A resolution [27] PDB: 

3G1M  is crystal structure of EthR from 

Mycobacterium tuberculosis in complex with 

compound BDM31381[28] PDB: 2QKX is 

crystal structure of N-acetyl glucosamine 1-

phosphate uridyltransferase from 

Mycobacterium tuberculosis complex with N-

acetyl glucosamine 1-phosphate [29]. For the 

better understanding the docking was 

performed for both Curcumin and Curcumin 

iron complex structures again 08 different 

targets using Isoniazid and Pyrazinamide as 

standard reference. 

Results 

The molecular docking results reveal that 

CUFE has a strong binding affinity when 

compared with Curcumin and reference 

standards. CUFE shows higher binding affinity 

towards the targets 3FNG, 4P8C, and 5V3Y 

with a binding energy of -11.01 kcal/mol, -

10.8kcal/mol, and -11.0 kcal/mol respectively. 

The Binding energy is notably high CUFE 

complex when compared with curcumin -9.6 

kcal/mol, -9.5 kcal/mol, and -9.2 kcal/mol for 

3FNG, 4P8C, and 5V3Y targets respectively. 

There was a significant difference in the 

binding energy levels of curcumin and CUFE 

complex with reference standard Isoniazid and 

Pyrazinamide.  The binding scores represent the 

strength of interaction between the mentioned 

compounds and their target proteins or 

structures. A more negative value typically 

indicates a stronger binding affinity, implying a 

lower energy state of the complex. In this 

context, the Curcumin-iron complex (CUFE) 

generally has more favorable binding scores 

than Curcumin alone, Isoniazid, and 

Pyrazinamide for the given PDB IDs. This 

suggests that the Curcumin-iron complex may 

have a stronger binding affinity with the target 

proteins associated with tuberculosis and could 

be a promising candidate for further 

investigation in tuberculosis treatment. The 

molecular docking image is illustrated in Figure 

1 & the molecular docking binding scores are 

given in Table 1. 



 

Figure 1. Molecular Docking Image of CUFE Towards PDB:3FNG, 4P8C, and 5V3Y 

Table 1. Molecular Docking Score of CuFe Complex 

S.No PDB ID CuFe 

Binding score 

(Kcal/mol) 

Curcumin alone 

Binding score 

(Kcal/mol) 

Isoniazid 

Binding score 

(Kcal/mol) 

Pyrazinamide 

Binding score 

(Kcal/mol) 

1.  4DRE -10.0 -7.6 -5.7 -4.7 

2.  1BVR -10.0 -8.4 -5.7 -4.8 

3.  3FNG -11.1 -9.6 -6.0 -5.0 

4.  4P8C -10.8 -9.5 -6.1 -5.3 

5.  5V3Y -11.0 -9.2 -6.2 -5.1 

6.  5EYR -9.0 -9.9 -6.6 -5.3 

7.  3G1M -8.1 -9.2 -6.4 -5.1 

8.  2QKX -9.7 -7.2 -5.2 -4.8 



Discussion 

TB is a continual, progressive life-

threatening infection with high mortality rates 

worldwide. The drug-resistance is the major 

obstacle to the eradication of Mycobacterium 

tuberculosis. It is much more imperative in this 

condition to find out the alternative treatment 

pattern from plant-based medicines since plant-

based medicines exist with secondary uses like 

anti-oxidant properties. Plant-based medicines 

are the essential origins of producing bioactive 

compounds, which play a fundamental role in 

discovering novel drugs for various chronic and 

infectious diseases. Plant-based bioactive 

compounds were the best mycobacteria-

inhibitory agents, with fewer (or no) adverse 

effects that guaranteed the patients' quick 

recovery[30]. Metal-based compounds 

acquired much interest 50 years ago due to their 

peculiar characteristic like antibacterial and 

many more. Certain Metals are crucial 

components for maintaining human 

equilibrium. A variety of biologically active 

metals, including bismuth (Bi), samarium (Sm), 

technetium (Tc), iron (Fe), gold (Au), silver 

(Ag), platinum (Pt), and gadolinium (Gd). 

These metallic atoms modulate the 

pharmacodynamic properties, pharmacokinetic 

characteristics, and biological activity of the 

compounds [31]. Iron dextran (Proferdex, 

Dexferrum, InFeD) or iron sucrose (Venofer) 

are administered intravenously to treat severe 

iron deficiency anemia [32]. Small molecule 

target-based screening is a trending 

technique in the drug discovery pipeline. In this 

regard, in silico studies helps in the detection of 

the therapeutic potential of investigation 

compound at the early-stages of drug discovery 

[33]. Ethnomedicinal plants plays a significant 

role in communicable, Non-communicable and 

immunomodulatory. As part of an 

Ethnomedicinal medicinal plant and adjuvant in 

day-to-day life food, garlic (Allium sativum), 

Allicin is the primary bioactive compound in 

garlic. Allicin has direct ability to kill the Mtb 

and also inhibit the Mtb Ag 85b which helps in 

TNF α. Piperine is an alkaloid which has 

immunomodulatory effect due to the presence 

of piperine as main active compound. Piperine 

helps in Tb eradication by inhibiting the efflux 

pump activity of Mtb and increases the 

bioavailability profile of antibiotics in pathogen 

cells [34]. Natural products plays a crucial role 

in drug discovery [35-37]. 

Conclusion 

In this current state, structurally modified bio 

compounds and metallodrugs have grown 

remarkably in the past five decades, especially 

in the Molecular biology/Phytochemistry and 

Drug discovery sectors. Furthermore, several 

bioactive compounds and metal-based 

complexes have been investigated to treat many 

disorders, including infectious diseases.  In this 

study, we established the therapeutic potential 

of metal (Fe) augmented curcumin against Mtb. 

However, to meet the regulatory standards, 

stringent multi-centric preclinical and clinical 

testing must be addressed before clinical trials, 

and extensive pharmacological tests must be 

performed to claim its bioavailability in 

different organs and serum. 
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