Table of Contents - Issue
Recent articles
-
Fabrication and Characterization of PVA Tricalcium Phosphate and Quercetin-doped Strontium Membranes for Guided Bone RegenerationAuthor: Gayathri RDOI: 10.21522/TIJPH.2013.SE.24.06.Art001
Fabrication and Characterization of PVA Tricalcium Phosphate and Quercetin-doped Strontium Membranes for Guided Bone Regeneration
Abstract:
Guided Bone Regeneration (GBR) is a technique used in reconstructive dentistry to address small defects around dental implants and to facilitate bone regeneration in alveolar defects. It involves the use of bone grafts and barrier membranes to promote the selective growth of bone tissue while preventing soft tissue infiltration. Surface structural morphology analysis using scanning electron microscopy (SEM) revealed notable differences between the fabricated membrane samples. A comparative assessment indicated an increase in both porosity and nanofiber size upon the addition of strontium nanoparticles. This alteration was further corroborated by the observed decrease in hydrophilicity, as evidenced by an increase in the contact angle from the typical 30 degrees to 58.7 degrees. Our study offers a promising avenue for advancing guided bone regeneration through the development of PVA-TCP membranes tailored with quercetin and strontium.
Fabrication and Characterization of PVA Tricalcium Phosphate and Quercetin-doped Strontium Membranes for Guided Bone Regeneration
References:
[1]. Liu J., Kerns D.G., 2014, Mechanisms of guided bone regeneration: a review. Open Dent J 8:56-65. Doi: 10.2174/1874210601408010056. PMCID: PMC4040931. PMID: 24894890.
[2]. Elgali I, Omar O, Dahlin C, Thomsen P., 2017, Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci., 125(5):315-337. Doi: 10.1111/eos.12364. PMCID: PMC5601292. PMID: 28833567.
[3]. Zhou T, Chen S, Ding X, Hu Z, Cen L, Zhang X., 2021, Fabrication and characterization of collagen/PVA dual-layer membranes for periodontal bone regeneration. Front Bioeng Biotechnol 9:630977. Doi: 10.3389/fbioe.2021.630977. PMCID: PMC8219956. PMID: 34178953.
[4]. Zhou M, Li X, Li Y, Yao Q, Ming Y, Li Z, Lu L, Shi S., 2017, Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv., 24(1):1230-1242. Doi: 10.1080/10717544.2017.1370619. PMCID: PMC8241186. PMID: 28856937.
[5]. Hussain M, Ullah S, Raza MR, Abbas N, Ali A., 2022, Recent developments in Zn-based biodegradable materials for biomedical applications. J Funct Biomater 14(1):1. Doi: 10.3390/jfb14010001. PMCID: PMC9865652. PMID: 36662048.
[6]. Tsuchida S, Nakayama T., 2023, Recent clinical treatment and basic research on the alveolar bone. Biomedicines 11(3):843. Doi: 10.3390/biomedicines11030843. PMCID: PMC10044990. PMID: 36979821.
[7]. Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D., 2022, Advances in barrier membranes for guided bone regeneration techniques. Front Bioeng Biotechnol., 10:921576. Doi: 10.3389/fbioe.2022.921576. PMCID: PMC9257033. PMID: 35814003.
[8]. Senthil R, Anitha R, Lakshmi T., 2024, Mineralized collagen fiber-based dental implant: Novel perspectives. J Adv Oral Res 15(1):62–9.
[9]. Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D., 2022, Advances in barrier membranes for guided bone regeneration techniques. Front Bioeng Biotechnol 10:921576. Doi: 10.3389/fbioe.2022.921576. PMCID: PMC9257033. PMID: 35814003.
[10]. Arigbede AO, Babatope BO, Bamidele MK., 2012, Periodontitis and systemic diseases: a literature review. J Indian Soc Periodontol 16(4):487-91. Doi: 10.4103/0972-124X.106878. PMCID: PMC3590713. PMID: 23493942.
[11]. Kim S, Kim SG., 2024, Advancements in alveolar bone grafting and ridge preservation: a narrative review on materials, techniques, and clinical outcomes. Maxillofac Plast Reconstr Surg 46(1):14. Doi: 10.1186/s40902-024-00425-w. PMCID: PMC11021384. PMID: 38625426.
[12]. Dave PH, Vishnupriya V, Gayathri R., 2016, Herbal remedies for anxiety and depression-A review. J Adv Pharm Technol Res 9:1253.
[13]. Balaji V, Priya VV, Gayathri R., 2017, Awareness of risk factors for obesity among College students in Tamil Nadu: A Questionnaire based study. J Adv Pharm Technol Res 10:1367.
[14]. Deenadayalan A, Subramanian V, Paramasivan V, Veeraraghavan VP, Rengasamy G, Coiambatore Sadagopan J, Rajagopal P, Jayaraman S., 2021, Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach. Molecules. https://doi.org/10.3390/molecules26247689
[15]. Gayathri R, Anuradha V Phytochemical screening and total phenolic content of aqueous and acetone extracts of seed, butter, mace of nutmeg (Myristica fragrans Houtt). Int. J. Pharm. Sci. Rev. Res.
[16]. Jerusha SP, Gayathri R, Vishnupriya V., 2016, Preliminary phytochemical analysis and cytotoxicity potential of Bacopa monnieri on oral cancer cell lines. Int J Pharm Sci Rev Res 39:4–8.
[17]. Tirupathi S, Afnan L., 2024, Dental Pulp Derived Stem Cells for Facial Nerve Regeneration and Functional Repair: A Systematic Review of Animal Studies. Current Oral Health Reports 11:198–214.
[18]. Ramamurthy J, Bajpai D., 2024, Role of alginate-based scaffolds for periodontal regeneration of intrabony defects: A systematic review. World J Dent 15:181–187.
[19]. Kumar JK, Surendranath P, Eswaramoorthy R., 2023, Regeneration of immature incisor using platelet rich fibrin: report of a novel clinical application. BMC Oral Health 23:69.
[20]. Kishen A, Cecil A, Chitra S., 2023, Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent J 35:678–683.
[21]. Lokesh Kumar S, Binish CJ, Rajprasad J, Tabassum S, Sadaiyandi V, Ramaraj SG, et al., 2024, Synergistic fabrication, characterization, and prospective optoelectronic applications of DES grafted activated charcoal dispersed PVA films. Polym Adv Technol [Internet]. 35(5).
[22]. Sudhakar MP, Bargavi P., 2023, Fabrication and characterization of stimuli responsive scaffold/bio-membrane using novel carrageenan biopolymer for biomedical applications. Bioresource Technology Reports 21:101344.
[23]. Durmaz B, Gunes N, Koparal M, Gul M, Dundar S, Bingul MB., 2023, Investigation of the effects of quercetin and xenograft on the healing of bone defects: an experimental study. J Oral Biol Craniofac Res 13(1):22-27. Doi: 10.1016/j.jobcr.2022.10.008. PMCID: PMC9636472. PMID: 36345499.
[24]. Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q., 2022, Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci 23(16):9206. Doi: 10.3390/ijms23169206. PMCID: PMC9408902. PMID: 36012473.
[25]. Bano S, Akhtar M, Yasir M, Salman Maqbool M, Niaz A, Wadood A, Ur Rehman MA., 2021, Synthesis and characterization of silver-strontium (Ag-Sr)-doped mesoporous bioactive glass nanoparticles. Gels 7(2):34. Doi: 10.3390/gels7020034. PMCID: PMC8103248. PMID: 33805013.
[26]. Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Ao Y, Boyan BD, Chen H., 2019, Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev 25(1):14-29. Doi: 10.1089/ten.TEB.2018.0119. PMCID: PMC6388715. PMID: 30079807.
[27]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[28]. Jayachandran P, Gayathri R, Jayaraman S, Vishnu Priya V, Kavitha S., 2023, Antioxidative stress potential of piperine in the gastrocnemius muscle of high fat diet and sucrose induced type 2 diabetic rats. HIV AIDS 23:81–89.
[29]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[30]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[31]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 36 2 -
An Interesting Case of Strangulate Left Obturator Hernia with Intestinal Obstruction and Septic ShockAuthor: Sathish Kumar. GDOI: 10.21522/TIJPH.2013.SE.24.06.Art002
An Interesting Case of Strangulate Left Obturator Hernia with Intestinal Obstruction and Septic Shock
References:
[1]. Kisaoglu, A., Ozogul. B., Yuce, I., Bayramoglu, A., & Atamanalp, S. S., 2014, Obturator hernia, a rare cause of small bowel obstruction: Case report. The Eurasian Journal of Medicine, 46(3), 224. doi: 10.5152/eajm.2014.56.
[2]. Zhang, H., Cong, J. C., & Chen, C. S., 2010, Ileum perforation due to delayed operation in obturator hernia: A case report and review of literatures. World J Gastroenterol, 16(1), 126, doi: 10.3748/wjg.v16.i1.126.
[3]. Liao, C. F., Hsu, K. C., Liu, C. C., & Chuang, C. H., 2010, Obturator hernia: A diagnostic challenge of small-bowel obstruction. The American Journal of the Medical Sciences, 1, 339(1), 92-4, doi: 10.1097/MAJ.0b013e3181bc2129.
[4]. Uludag, M., Yetkin, G., Kebudi, A., Isgor, A., Akgun, I., & Dönmez, A. G. A., 2006, Rare cause of intestinal obstruction: Incarcerated femoral hernia, strangulated obturator hernia. Hernia, 10, 288-91, doi: 10.1007/s10029-006-0074-6.
[5]. Sorabella, R. A., Miniati, D. N., & Brandt, M. L., 2005, Laparoscopic obturator hernia repair in an adolescent. Journal of Pediatric Surgery, 1, 40(12), 39-41, doi: 10.1016/j.jpedsurg.2005.08.046.
[6]. Kohga, A., Kawabe, A., Cao, Y., Yajima, K., Okumura, T., Yamashita, K., Isogaki, J., & Suzuki, K., 2017, Elective laparoscopic repair after reduction might be useful strategy for incarcerated obturator hernia: A case report. Journal of Surgical Case Reports, 9, rjx180. doi: 10.1093/jscr/rjx180.
[7]. Shipkov, C. D., Uchikov, A. P., & Grigoriadis, E., 2004, The obturator hernia: Difficult to diagnose, easy to repair. Hernia, 8, 155-7, doi: 10.1007/s10029-003-0177-2.
[8]. Hayes, C., Schmidt, K., Neduchelyn, Y., & Ivanovski, I., 2020, Obturator hernia of Richter type: A diagnostic dilemma. BMJ Case Rep, 13(12), doi: 10.1136/bcr-2020-238252.
[9]. Gallegos, N. C., Dawson, J., Jarvis, M., & Hobsley, M., 1991, Risk of strangulation in groin hernias. Journal of British Surgery, 78(10), 1171-3, doi: 10.1002/bjs.1800781007.
[10]. Napa, M., Giridharan, B., Palit, S., Nikhithaa, P., Giridharan, S. B., & Palit, S. R., 2023, Strangulated sliding inguinoscrotal hernia with a gangrenous bladder and ileum. Cureus, 15(8), Doi 10.7759/cureus.43028.
[11]. Chung, C. C., Mok, C. O., Kwong, K. H., Ng, E. K., Lau, W. Y., & Li, A. K., 1997, Obturator hernia revisited: a review of 12 cases in 7 years. Journal of the Royal College of Surgeons of Edinburgh, 1, 42(2), 82-4.
[12]. Mantoo, S. K., Mak, K., Tan, T. J., 2009, Obturator hernia: Diagnosis and treatment in the modern era. Singapore Med J, 1, 50(9), 866-70.
[13]. Shapiro, K., Patel, S., Choy, C., Chaudry, G., Khalil, S., & Ferzli, G., 2004, Totally extraperitoneal repair of obturator hernia. Surg Endosc, 18, 954-956, doi: 10.1007/s00464-003-8212-z.
[14]. Kammori, M., Mafune, K., Hirashima, T., Kawahara, M., Hashimoto, M., Ogawa, T., Ohta, H., Hashimoto, H., & Kaminishi, M., 2004, Forty-three cases of obturator hernia. Am J Surg, 187, 549-552, doi: 10.1016/j.amjsurg.2003.12.041.
[15]. Valente, T., Ferreira, N., Ferreira, G., Figueiredo, A., Bárbara, P., Marinho, R., & Santos, M. C., 2022, Little old lady’s hernia: A case of strangulated obturator hernia in a 88-year-old woman. International Surgery Journal, 9(12), 2045-2047. Doi: https://doi.org/10.18203/2349-2902.isj20223169.
[16]. Li, Z., Gu, C., Wei, M., Yuan, X., & Wang, Z., 2021, Diagnosis and treatment of obturator hernia: Retrospective analysis of 86 clinical cases at a single institution. BMC Surg, 21(1), 124.
[17]. Conti, L., Grassi, C., Banchini, F., Bonfili, D., Cattaneo, G. M., Baldini, E., & Capelli, P., 2022, Management of obturator hernia. Hernia Surgery, 93-106.
[18]. Mercado, M., Diab, J., & Loi, K., 2021, A delayed diagnosis of obturator hernia hoodwinked by previous laparoscopic inguinal hernia repair. J Surg Case Rep, 9, rjab407, doi: 10.1093/jscr/rjab407.
[19]. Meena, S. P., Vency, A. C., Badkur, M., & Lodha, M., 2021, Left Sided Strangulated Obturator Hernia: A Rare Case Report and Literature Review. Int J Appl Basic Med Res, 11(3), 198-200 doi: 10.4103/ijabmr.IJABMR_429_20.
[20]. Mnari, W., Hmida, B., Maatouk, M., Zrig, A., & Golli, M., 2019, Strangulated obturator hernia: a case report with literature review. Pan African Medical Journal, 26, 32(1), doi: 10.11604/pamj.2019.32.144.14846.
[21]. Nishina, M., Fujii, C., Ogino, R., Kobayashi, R., Kumada, K., Yamane, K., & Kohama, A., 2002, Preoperative diagnosis of obturator hernia by computed tomography. InSeminars in Ultrasound, CT and MRI, 23; 193-196. DOI: 10.1016/s0887-2171(02)90005-3.
[22]. Varghese, R. M., Subramanian, A. K., & Maliael, M. T., 2023, PowerScope™ for Class II Malocclusions: A Systematic Review and Meta-analysis. World Journal of Dentistry, 14(7), 639-647.
[23]. Rajamanickam, P., & Ramasamy, N., 2023, Effects of Ultrasonic Instrumentation on the Shear Bond Strength of Ceramic Brackets: An In Vitro Study. Journal of Advanced Oral Research, 14(1), 81-87. doi:10.1177/23202068231166507.
[24]. Krishnan, R. P., Pandiar, D., & Ramani, P., 2023, Sclerosing Variant of Adenoid Cystic Carcinoma - A Case Report on the Role of Sclerosis in the Prognostic Outcome. Annals of maxillofacial surgery, 13(2), 248–251. https://doi.org/10.4103/ams.ams_116_23.
[25]. Krishnan, R. P., Ramani, P., Gheena, S.,
[26]. Ramasubramanian, A., Karunagaran, M., & Hannah, R., 2022, Microscopic appearances of commonly implanted food particles. Journal of oral and maxillofacial pathology: JOMFP, 26(3), 352–355. https://doi.org/10.4103/jomfp.jomfp_117_21.
[27]. Jayaraman, S., Raj Natarajan, S., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), 1007–1013. https://doi.org/10.1016/j.sdentj.2023.08.003.
[28]. Pazhani, J., Jayaraman, S., Veeraraghavan, V. P., & Jasmine, S., 2024, Endothelin-1 axis as a therapeutic target in oral squamous cell carcinoma: Molecular insights. Journal of Stomatology, oral and Maxillofacial Surgery, 125(6), 101792. Advance online publication. https://doi.org/10.1016/j.jormas.2024.101792.
[29]. Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6), 704–713. https://doi.org/10.1016/j.jobcr.2023.09.002.
[30]. Gayathri, R., Ramani, P. and Veeraraghavan, V.P., 2024. Longitudinal study on salivary IL-6 trajectories in postoperative OSCC patients after chemotherapy and radiotherapy. Journal of Stomatology, Oral and Maxillofacial Surgery, p.101909. https://doi.org/10.1016/j.jormas.2024.101909.
[31]. JH, S.F., Jayaram, S., Veeraraghavan, V.P. and Karobar, M.I., 2024. miRNA99a as a Potential target in P13K/Akt1/mTOR signaling pathway in progression of OSCC. Advances in Biomarker Sciences and Technology, 6, pp.242-259. DOI: 10.1016/j.abst.2024.10.003.
[32]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[33]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[34]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[35]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 28 0 -
Exploring Galium Aparine as a Promising Natural Therapy for Oral Squamous Cell CarcinomaAuthor: Vishnu Priya VeeraraghavanDOI: 10.21522/TIJPH.2013.SE.24.06.Art003
Exploring Galium Aparine as a Promising Natural Therapy for Oral Squamous Cell Carcinoma
Abstract:
Oral Squamous Cell Carcinoma (OSCC) is a head and neck cancer that has a detrimental impact on patients' quality of life. Surgery, radiation, and chemotherapy are standard treatment procedures that often have adverse effects and are limited in effectiveness, necessitating the quest for other therapeutic techniques.Galium aparine, a phytochemical, is currently acknowledged as a potentially effective treatment for OSCC. According to the literature, Galium aparine has a wide range of chemical elements, including flavonoids like quercetin and rutin, iridoids like asperuloside and aucubin, and phenolic acids like chlorogenic and caffeic acids. These chemicals have antioxidant, anticancer, and immunomodulatory properties, which make Galium aparine a potential natural treatment for OSCC.Preliminary investigations demonstrate its ability to inhibit cancer cell development in vitro and in vivo by inducing apoptosis and/or regulating immune responses. Furthermore, G.aparine extracts have been employed as hepatoprotective agents in a variety of malignancies, including breast carcinoma and melanoma.As a result of Galium aparineextracts’s proven antioxidant and anti-cancer properties in cancerous tissues elsewhere in the body, we have finally concluded that it might possess similar properties in OSCC. To fully understand its modes of action and possible impact on improving outcomes for patients with oral squamous cell carcinoma, more investigation and clinical trials are needed.This paper provides an overview of Galium aparine's biological activities, composition, and role as a powerful anti-cancer agent, as well as potential future research directions.
Exploring Galium Aparine as a Promising Natural Therapy for Oral Squamous Cell Carcinoma
References:
[1]. Meier, J. K., Schuderer, J. G., Zeman, F., Klingelhöffer, C., Hullmann, M., Spanier, G., & Ettl, T., 2019, Health-related quality of life: a retrospective study on local vs. microvascular reconstruction in patients with oral cancer. BMC oral health, 19, 1-8.
[2]. Bagan, J., Sarrion, G. and Jimenez, Y., 2010, Oral cancer: clinical features. Oral oncology, 46(6), pp.414-417.
[3]. Warnakulasuriya, S., 2020, Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncology, 102, p.104550.
[4]. Tarakji, B., 2022, Dentists’ perception of oral potentially malignant disorders. International Dental Journal, 72(3), pp.414-419.
[5]. Kerr, A.R. and Lodi, G., 2021, Management of oral potentially malignant disorders. Oral Diseases, 27(8), pp.2008-2025.
[6]. Selvaraj FM, Pillai VR, Joseph AP, Ramani P, Pazhani J, Mony V. Assessment of Tumor Budding in Different Grades of Oral Squamous Cell Carcinoma. Journal of Orofacial Sciences. 2023 Jul 1;15(2):160-6.
[7]. Tuorkey, M.J., 2015, Cancer therapy with phytochemicals: present and future perspectives. Biomedical and Environmental Sciences, 28(11), pp.808-819.
[8]. Orhan, N., Orhan, D.D., Aslan, M., Şüküroğlu, M. and Orhan, I.E., 2012, UPLC–TOF-MS analysis of Galium spurium towards its neuroprotective and anticonvulsant activities. Journal of ethnopharmacology, 141(1), pp.220-227.
[9]. Bokhari, J., Khan, M.R., Shabbir, M., Rashid, U., Jan, S. and Zai, J.A., 2013, Evaluation of diverse antioxidant activities of Galium aparine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, pp.24-29.
[10]. Deliorman, D.İ.D.E.M., Calis, I. and Ergun, F., 2001, Iridoids from Galium aparine. Pharmaceutical Biology, 39(3), pp.234-235.
[11]. Simon, D., 2018, Recent advances in clinical allergy and immunology. International archives of allergy and immunology, 177(4), pp.324-333.
[12]. Vorob'ev, A.A., 2002, Principles of classification and the strategy of immunomodulators used in medicine. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, (4), pp.93-98.
[13]. Vidalain, J.P., Onimus, M. and Michel, C.R., 1975, Long-term results of sub-astragal and mediotarsal arthrodesis. Revue de chirurgie orthopedique et reparatrice de l'appareil moteur, 61, pp.301-306.
[14]. Sun, H. X., Xie, Y. and Ye, Y. P., 2009, Advances in saponin-based adjuvants. Vaccine, 27(12), pp.1787-1796.
[15]. Mocan, A., Crișan, G., Vlase, L., Crișan, O., Vodnar, D.C., Raita, O., Gheldiu, A.M., Toiu, A., Oprean, R. and Tilea, I., 2014, Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits. Molecules, 19(9), pp.15162-15179.
[16]. Taylor, K., 1999, Galium aparine L. Journal of Ecology, 87(4), pp.713-730.
[17]. Mitova, M.I., Anchev, M.E., Handjieva, N.V. and Popov, S.S., 2002, Iridoid patterns in Galium L. and some phylogenetic considerations. Zeitschrift für Naturforschung C, 57(3-4), pp.226-234.
[18]. Ilina, T., Kashpur, N., Granica, S., Bazylko, A., Shinkovenko, I., Kovalyova, A., Goryacha, O. and Koshovyi, O., 2019, Phytochemical profiles and in vitro immunomodulatory activity of ethanolic extracts from Galium aparine L. Plants, 8(12), p.541.
[19]. Al-Snafi, A.E., 2022, Constituents, nutritional and pharmacological importance of Prunus persica-A review. World Journal of Advanced Pharmaceutical and Medical Research, 3(1), pp.019-029.
[20]. Kanso, M.A., Hijazi, M.A., El-Lakany, A. and Aboul-Ela, M., 2024, Review on phytochemical constituents and pharmacological activities of genus Galium. Journal of Applied Pharmaceutical Science.
[21]. Kuhtinskaja, M., Bragina, O., Kulp, M. and Vaher, M., 2020, Anticancer effect of the iridoid glycoside fraction from Dipsacus fullonum L. leaves. Natural Product Communications, 15(9), p.1934578X20951417.
[22]. Saar-Reismaa, P., Koel, M., Tarto, R. and Vaher, M., 2022, Extraction of bioactive compounds from Dipsacus fullonumleave using deep eutectic solvents. Journal of Chromatography A, 1677, p.463330.
[23]. Vorob'ev, A.A., 2002, Principles of classification and the strategy of immunomodulators used in medicine. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, (4), pp.93-98.
[24]. Dai, J. and Mumper, R.J., 2010, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), pp.7313-7352.
[25]. Ilina, T., Skowrońska, W., Kashpur, N., Granica, S., Bazylko, A., Kovalyova, A., Goryacha, O. and Koshovyi, O., 2020, Immunomodulatory activity and phytochemical profile of infusions from Cleavers herb. Molecules, 25(16), p.3721.
[26]. Bradic, J., Petkovic, A. and Tomovic, M., 2021, Phytochemical and Pharmacological properties of some species of the genus. Experimental and Applied Biomedical Research (EABR), 22(3), pp.187-193.
[27]. Arts, I.C. and Hollman, P.C., 2005, Polyphenols and disease risk in epidemiologic studies. The American journal of clinical nutrition, 81(1), pp.317S-325S.
[28]. Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L., 2004, Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), pp.727-747.
[29]. Wang, C., Gong, X., Bo, A., Zhang, L., Zhang, M., Zang, E., Zhang, C. and Li, M., 2020, Iridoids: research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules, 25(2), p.287.
[30]. Liu, S., Khan, A.R., Yang, X., Dong, B., Ji, J. and Zhai, G., 2021, The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. Journal of Controlled Release, 335, pp.1-20.
[31]. Naeem, A., Hu, P., Yang, M., Zhang, J., Liu, Y., Zhu, W. and Zheng, Q., 2022, Natural products as anticancer agents: current status and future perspectives. Molecules, 27(23), p.8367.
[32]. Harsha, C., Banik, K., Ang, H.L., Girisa, S., Vikkurthi, R., Parama, D., Rana, V., Shabnam, B., Khatoon, E., Kumar, A.P. and Kunnumakkara, A.B., 2020, Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials. International journal of molecular sciences, 21(9), p.3285.
[33]. Christianto, S., Li, K.Y., Huang, T.H. and Su, Y.X., 2022, The Prognostic Value of Human Papilloma Virus Infection in Oral Cavity Squamous Cell Carcinoma: A Meta‐Analysis. The Laryngoscope, 132(9), pp.1760-1770.
[34]. Cavalcante, G.C., Schaan, A.P., Cabral, G.F., Santana-da-Silva, M.N., Pinto, P., Vidal, A.F. and Ribeiro-dos-Santos, Â., 2019, A cell’s fate: an overview of the molecular biology and genetics of apoptosis. International journal of molecular sciences, 20(17), p.4133.
[35]. Schmidt, M., Polednik, C., Roller, J. and Hagen, R., 2014, Galium verum aqueous extract strongly inhibits the motility of head and neck cancer cell lines and protects mucosal keratinocytes against toxic DNA damage. Oncology Reports, 32(3), pp.1296-1302.
[36]. Zhang, J., Zheng, G., Zhou, L., Li, P., Yun, M., Shi, Q., Wang, T. and Wu, X., 2018, Notch signalling induces epithelial-mesenchymal transition to promote metastasis in oral squamous cell carcinoma. International journal of molecular medicine, 42(4), pp.2276-2284.
[37]. Zong, W.X., Rabinowitz, J.D. and White, E., 2016, Mitochondria and cancer. Molecular cell, 61(5), pp.667-676.
[38]. Carr, C., Ng, J. and Wigmore, T., 2008, The side effects of chemotherapeutic agents. Current Anaesthesia & Critical Care, 19(2), pp.70-79.
[39]. Kelland, L., 2007, The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), pp.573-584.
[40]. Kayl, A.E. and Meyers, C.A., 2006, Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics and gynaecology, 18(1), pp.24-28.
[41]. Laanet, P.R., Saar-Reismaa, P., Jõul, P., Bragina, O. and Vaher, M., 2023, Phytochemical screening and antioxidant activity of selected Estonian Galium species. Molecules, 28(6), p.2867.
[42]. Hamdi, O.H., Saadedin, S.M. and Al_Zaidi, I.H., 2021, Green biosynthesis of silver nanoparticles using gallium aparine green part extract and anti-skin cancer activity. Medico-legal Update, 21(2), pp.908-913.
[43]. Atmaca, H., Bozkurt, E., Cittan, M. and Tepe, H.D., 2016, Effects of Galium aparine extract on the cell viability, cell cycle and cell death in breast cancer cell lines. Journal of ethnopharmacology, 186, pp.305-310.
[44]. Sahin, B., Karabulut, S., Filiz, A.K., Özkaraca, M., Gezer, A., Akpulat, H.A. and Ataseven, H., 2022, Galium aparine L. protects against acetaminophen-induced hepatotoxicity in rats. Chemico-Biological Interactions, 366, p.110119.
[45]. Mazzio, E.A. and Soliman, K.F., 2010, In vitro screening of tumoricidal properties of international medicinal herbs: part II. Phytotherapy Research, 24(12), pp.1813-1824.
[46]. Corrigan, D., Timoney, R.F. and Donnelly, D.M., 1978, Iridoids and alkanes in twelve species of Galium and Asperula. Phytochemistry, 17(7), pp.1131-1133.
[47]. Ramasubramanian A, Arumugam P, Ramani P, Kannan BC, Murugan MS. Identification of Novel Cytochrome C1 (CYC1) Gene Expression in Oral Squamous Cell Carcinoma- An Evaluative Study. Ann Maxillofac Surg. 2022 Jul-Dec;12(2):144-150. doi: 10.4103/ams.ams_26_22. Epub 2022 Aug 24. PMID: 36874769; PMCID: PMC9976869.
[48]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[49]. Subramanian, A.K. and Balakrishnan, N., Evaluation of Biological Response Elicited by Two Novel Tooth Cream Formulations of Cocos nucifera-Cell Line Studies and MTT Assay on Human Gingival Fibroblast.
[50]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[51]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[52]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 39 1 -
Thuja Occidentalis as a Promising Natural Therapy in Oral Squamous Cell Carcinoma: A Literature ReviewAuthor: Vishnu Priya VeeraraghavanDOI: 10.21522/TIJPH.2013.SE.24.06.Art004
Thuja Occidentalis as a Promising Natural Therapy in Oral Squamous Cell Carcinoma: A Literature Review
Abstract:
Oral cancer continues to be one of the leading causes of death globally, being more prevalent in developing countries. Radiation, chemotherapy, targeted therapy, immunotherapy, hormone-based therapies, and surgery are common treatment plans for oral cancer that lead to a range of short- and long-term side effects resulting in an urgent need to develop treatment options with minimal or no adverse effects. Recently, numerous bioactive compounds derived from various plants have garnered attention as potential therapeutic options for cancer treatment.Thuja occidentalis, also known as Eastern White Cedar, has been traditionally used for its medicinal properties. The components of this plant like thujone, flavonoids, and polysaccharides, have demonstrated significant pharmacological properties, including antimicrobial, antioxidant, anti-inflammatory, and anti-cancer effects. These compounds work through various mechanisms, such as promoting apoptosis, reducing oxidative stress, and enhancing the immune response. There is no literature available assessing the role of T.occidentalis in Oral Squamous Cell Carcinoma (OSCC) and the current article will be a novel overview discussing its pharmacological properties and its potential role in the treatment of OSCC. However, further research is needed to understand the precise molecular mechanisms, optimal dosage, and evaluate the synergistic effects with conventional cancer therapies.
Thuja Occidentalis as a Promising Natural Therapy in Oral Squamous Cell Carcinoma: A Literature Review
References:
[1] Jayaraman, S., Natarajan, S.R., Veeraraghavan, V.P. and Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3), Journal of Oral Biology and Craniofacial Research, 13(6), doi: 10.1016/j.jobcr.2023.09.002
[2]. Chanda, S., Kataki, A.C., Dogra, V., Bhagabaty, S.M., Varma, D. and Hegde, S., 2019, Community Based Mobile Screening Programme for Oral, Breast and Cervical Cancers: A Programmatic Insight from rural Assam, India, Texila International Journal of Public Health, 7(1), doi: 10.21522/TIJPH.2013.07.01.Art009
[3]. Kumar, R.S., Amudha, P., Vidya, R., Kalpana, C.S. and Sudhashini, S., 2024, A Review on Anticancer Properties of Chebulagic Acid from Terminalia chebula, Texila International Journal of Public Health , 12(3) doi: 10.21522/TIJPH.2013.12.03.Art047
[4]. Selvaraj, F.M., Joseph, A.P., Pillai, V.R., Ramani, P., Pazhani, J. and Mony, V., 2023, Significance of tumour budding and invasive characteristics in grading of oral squamous cell carcinoma, Journal of Oral and Maxillofacial Pathology, 27(4), doi: 10.4103/jomfp.jomfp_410_23
[5]. Ojeda, D., Huber, M.A. and Kerr, A.R., 2020, Oral potentially malignant disorders and oral cavity cancer, Dermatologic Clinics, 38(4), pp.507-521, doi: 10.1016/j.det.2020.05.011.
[6]. Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., Nice, E.C., Tang, J. and Huang, C., 2023, Oral squamous cell carcinomas: state of the field and emerging directions, International Journal of Oral Science, 15(1), p.44, doi:10.1038/s41368-023-00249-w.
[7]. McCord, C., Kiss, A., Magalhaes, M.A., Leong, I.T., Jorden, T. and Bradley, G., 2021, Oral squamous cell carcinoma associated with precursor lesions, Cancer Prevention Research, 14(9), pp.873-884, doi:10.1158/1940-6207.CAPR-21-0047.
[8]. Irani, S., 2022, Diagnostic Strategies for Early Detection of Oral Squamous Cell Carcinoma: A Review Article, Avicenna Journal of Dental Research, 14(3), pp.137-143, doi:10.34172/ajdr.2022.25.
[9]. Ling, Z., Cheng, B. and Tao, X., 2021, Epithelial‐to‐mesenchymal transition in oral squamous cell carcinoma: challenges and opportunities, International Journal of Cancer, 148(7), pp.1548-1561, doi:10.1002/ijc.33352.
[10]. Naeem, A., Hu, P., Yang, M., Zhang, J., Liu, Y., Zhu, W. and Zheng, Q., 2022, Natural products as anticancer agents: Current status and future perspectives, Molecules, 27(23), p.8367, doi:10.3390/molecules27238367.
[11]. Caruntu, S., Ciceu, A., Olah, N.K., Don, I., Hermenean, A. and Cotoraci, C., 2020, Thuja occidentalis L.(Cupressaceae): Ethnobotany, phytochemistry and biological activity, Molecules, 25(22), p.5416, doi:10.3390/molecules25225416.
[12]. Thakur, M., Sobti, R. and Kaur, T., 2023, Asian Pacific Journal of Tropical Medicine, Asian Pacific Journal of Tropical Medicine, 16(4), doi:10.4103/1995-7645.374353.
[13]. Adhikary, K., 2020, Plant with Beneficial Properties Thuja occidentalis L.(Cupressaceae)-A Review, International Journal for Research in Applied Science & Engineering Technology, 8, pp.2407-2409, doi:10.22214/ijraset.2020.6387.
[14]. Ghantous, Y., Schussel, J.L. and Brait, M., 2018, Tobacco and alcohol-induced epigenetic changes in oral carcinoma, Current Opinion in Oncology, 30(3), pp.152-158, doi:10.1097/CCO.0000000000000444.
[15]. Markopoulos, A.K., 2012, Current aspects on oral squamous cell carcinoma, The Open Dentistry Journal, 6, p.126, doi:10.2174/1874210601206010126.
[16]. Devi, P., Dwivedi, R., Sankar, R., Jain, A., Gupta, S. and Gupta, S., 2024, Unraveling the Genetic Web: H-Ras Expression and Mutation in Oral Squamous Cell Carcinoma—A Systematic Review, Head and Neck Pathology, 18(1), p.21, doi:10.1007/s12105-024-01623-8.
[17]. Krishna, A., Singh, S., Singh, V., Kumar, V., Singh, U.S. and Sankhwar, S.N., 2018, Does Harvey-Ras gene expression lead to oral squamous cell carcinoma? A clinicopathological aspect, Journal of Oral and Maxillofacial Pathology, 22(1), pp.65-72, doi:10.4103/jomfp.JOMFP_246_17.
[18]. Gunardi, I., Sufiawati, I., Goenawan, H., Herawati, D.M.D., Lesmana, R, and Abdullah, A.G., 2023, Research Trends in Molecular Biological Studies on Oral Squamous Cell Carcinoma: A Bibliometric Analysis, Oncology Reviews, 17, p.11585, doi:10.3389/or.2023.11585.
[19]. Misra, J.R. and Irvine, K.D., 2018, The Hippo signaling network and its biological functions, Annual Review of Genetics, 52(1), pp.65-87, doi: 10.1146/annurev-genet-120417-031621.
[20]. Mesgari, H., Esmaelian, S., Nasiri, K., Ghasemzadeh, S., Doroudgar, P. and Payandeh, Z., 2023, Epigenetic regulation in oral squamous cell carcinoma microenvironment: A comprehensive review, Cancers, 15(23), p.5600,doi:10.3390/cancers15235600.
[21]. Kim, S.Y., Han, Y.K., Song, J.M., Lee, C.H., Kang, K., Yi, J.M. and Park, H.R., 2019, Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma (OSCC), Clinical Epigenetics, 11, pp.1-12, doi:10.1186/s13148-019-0715-0.
[22]. Qiao, B., Li, S., Wang, D. and Wu, D., 2022, Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma, Frontiers in Oncology, 12, p.874353, doi:10.3389/fonc.2022.874353.
[23]. Mastronikolis, N.S., Kyrodimos, E., Piperigkou, Z., Spyropoulou, D., Delides, A., Giotakis, E., Alexopoulou, M., Bakalis, N.A. and Karamanos, N.K., 2024, Matrix‐based molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma, IUBMB Life, doi:10.1002/iub.2803.
[24]. Bharti, K., Sharma, M., Vyas, G.K. and Sharma, S., 2022, A review on phytochemical pharmacological and biological activities of thuja occidentalis, Asian Journal of Pharmaceutical Research and Development, 10(2), pp.111-115. doi:10.22270/ajprd.v10i2.1105.
[25]. Naser, B., Bodinet, C., Tegtmeier, M. and Lindequist, U., 2005, Thuja occidentalis (Arbor vitae): a review of its pharmaceutical, pharmacological and clinical properties, Evidence‐Based Complementary and Alternative Medicine, 2(1), pp.69-78, doi:10.1093/ecam/neh065.
[26]. Hovav, A.H. and Wilensky, A., 2024, The role of the epithelial sentinels, Langerhans cells and γδT cells, in oral squamous cell carcinoma, Periodontology 2000, doi:10.1111/prd.12544.
[27]. Wei, X.Y., Tan, Y.Q. and Zhou, G., 2024, γδ T cells in oral diseases, Inflammation Research, 73(5), pp.867-876, doi:10.1007/s00011-024-01870-z.
[28]. Liang, S.B., Zhang, Y.Y., Shen, C., Liang, C.H., Lai, B.Y., Dai, N., Li, Y.Q., Tian, Z.Y., Zhang, X.W., Jiang, Y. and Xiong, M., 2021, Chinese herbal medicine used with or without conventional Western therapy for COVID-19: an evidence review of clinical studies, Frontiers in Pharmacology, 11, p.583450, doi: 10.3389/fphar.2020.583450.
[29]. Chan, K.F., Duarte, J.D.G., Ostrouska, S. and Behren, A., 2022, γδ T cells in the tumor microenvironment—Interactions with other immune cells, Frontiers in Immunology, 13, p.894315, doi:10.3389/fimmu.2022.894315.
[30]. Zhou, Y., Liu, J.Q., Zhou, Z.H., Lv, X.T., Chen, Y.Q., Sun, L.Q. and Chen, F.X., 2016, Enhancement of CD3AK cell proliferation and killing ability by α-thujone, International Immunopharmacology, 30, pp.57-61, doi:10.1016/j.intimp.2015.11.027.
[31]. Sunila, E.S., Hamsa, T.P. and Kuttan, G., 2011, Effect of Thuja occidentalis and its polysaccharide on cell-mediated immune responses and cytokine levels of metastatic tumor-bearing animals, Pharmaceutical Biology, 49(10), pp.1065-1073, doi:10.3109/13880209.2011.565351.
[32]. Biswas, R., Mandal, S.K., Dutta, S., Bhattacharyya, S.S., Boujedaini, N. and Khuda-Bukhsh, A.R., 2011, Thujone‐rich fraction of Thuja occidentalis demonstrates major anti‐cancer potentials: Evidences from in vitro studies on A375 cells, Evidence‐Based Complementary and Alternative Medicine, 2011(1), p.568148. doi:10.1093/ecam/neq042.
[33] Saha, S., Bhattacharjee, P., Mukherjee, S., Mazumdar, M., Chakraborty, S., Khurana, A., Nayak, D., Manchanda, R., Chakrabarty, R., Das, T. and Sa, G., 2014, Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells, Oncology Reports, 31(4), pp.1589-1598. doi:10.3892/or.2014.2993.
[34] Pudełek, M., Catapano, J., Kochanowski, P., Mrowiec, K., Janik-Olchawa, N., Czyż, J. and Ryszawy, D., 2019, Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro, Fitoterapia, 134, pp.172-181.doi:10.1016/j.fitote.2019.02.020.
[35] Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[36] Chang, L.C., Song, L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M. and Kinghorn, A.D., 2000, Bioactive Constituents of Thuja o ccidentalis. Journal of Natural Products, 63(9), pp.1235-1238, doi:10.1021/np0001575.
[37] Bagot, J.L., 2020, How to prescribe Thuja occidentalis in oncology? Analysis of the literature, study of practices and personal experience, La Revue d'Homéopathie, 11(3), pp.e26-e32, doi:10.1016/j.revhom.2020.07.001.
[38] Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[39] Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[40] Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 32 2 -
Action of Cyanidin-3-Glucoside on Anti-obesity: An In-silico ApproachAuthor: Kaviyarasi RDOI: 10.21522/TIJPH.2013.SE.24.06.Art005
Action of Cyanidin-3-Glucoside on Anti-obesity: An In-silico Approach
Abstract:
Cyanidin-3-glucoside (C3G), a flavonoid is present in berries and has anti-obesity properties. Understanding the mechanisms underlying its effects on metabolic pathways linked to obesity is vital to its therapeutic use. The aim of this study is to investigate the interaction of C3G with key metabolic proteins, including AMP-activated protein kinase (AMPK), Adiponectin receptor 1 (AdipoR1), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), using in-silico methods. This in-silico study investigated C3G's binding affinities to AMPK, AdipoR1, and PGC1α using molecular docking simulations. Protein structures were created with Discovery Studio Visualizer 2020 and acquired from the Protein Data Bank. Using AutoDock 1.5.7, C3G was extracted from PubChem, its energy was reduced, and it was docked to the protein targets. Analysis was done on the root mean square deviation (RMSD) values, interaction types, and binding affinities. C3G had docking scores of -7.3, -7.3, and -7.8 kcal/mol for AMPK, AdipoR1, and PGC1α, respectively, indicating strong binding affinities. Pi-anion, pi-alkyl, and hydrogen bonding were all engaged in the interactions. Stable binding conformations were indicated by low RMSD values, indicating that C3G may influence energy management and lipid metabolism. The potential of C3G as an anti-obesity drug was suggested by its remarkable binding affinities with important metabolic proteins. Additional in vitro and in vivo investigations are required to confirm these results and investigate the potential therapeutic uses of C3G.
Action of Cyanidin-3-Glucoside on Anti-obesity: An In-silico Approach
References:
[1]. Zad, O.D., Al-Dalali, S., Zhao, L., Zhao, L. and Wang, C., 2024. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochemical and Biophysical Research Communications, p.150344.
[2]. Agustin, A.T., Safitri, A. and Fatchiyah, F., 2020. An in-silico approach reveals the potential function of cyanidin-3-o-glucoside of red rice in inhibiting the advanced glycation end products (AGES)-receptor (RAGE) signaling pathway. Acta Informatica Medica, 28(3), p.170.
[3]. Guo, H., Xia, M., Zou, T., Ling, W., Zhong, R. and Zhang, W., 2012. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. The Journal of Nutritional Biochemistry, 23(4), pp.349-360.
[4]. Hirshasri, A.G., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., The Effect of Aspalathin on SMAD2, SMAD3, TGF-β-A Major Contributor of Inflammation–An In-silico Approach. DOI: 10.21522/TIJPH.2013.SE.24.01.Art009.
[5]. Su, P., Veeraraghavan, V.P., Krishna Mohan, S. and Lu, W., 2019. A ginger derivative, zingerone—a phenolic compound—induces ROS‐mediated apoptosis in colon cancer cells (HCT‐116). Journal of biochemical and molecular toxicology, 33(12), p.e22403. DOI: 10.1002/jbt.22403.
[6]. Jayaraman, S., Krishnamoorthy, K., Prasad, M., Veeraraghavan, V.P., Krishnamoorthy, R., Alshuniaber, M.A., Gatasheh, M.K. and Elrobh, M., 2023. Glyphosate potentiates insulin resistance in skeletal muscle through the modulation of IRS-1/PI3K/Akt mediated mechanisms: an in vivo and in silico analysis. International Journal of Biological Macromolecules, 242, p.124917.
[7]. Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI: 10.29219/fnr.v68.9650
[8]. Roy, J.R., Janaki, C.S., Jayaraman, S., Veeraraghavan, V.P., Periyasamy, V., Balaji, T., Vijayamalathi, M., Bhuvaneswari, P. and Swetha, P., 2023. Hypoglycemic potential of carica papaya in liver is mediated through IRS-2/PI3K/SREBP-1c/GLUT2 signaling in high-fat-diet-induced type-2 diabetic male rats. Toxics, 11(3), p.240. DOI: 10.3390/toxics11030240
[9]. Ponnusamy, B., Veeraraghavan, V.P., Al-Huseini, I., Woon, C.K., Jayaraman, S. and Sirasanagandla, S.R., 2024. Heavy Metal Exposure-Induced Cardiovascular Diseases: Molecular Mechanisms and Therapeutic Role of Antioxidants. Current Medicinal Chemistry. DOI: 10.2174/0109298673307446240514064253.
[10]. Wondmkun, Y.T., 2020. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity, pp.3611-3616.
[11]. Kannan, B. and Arumugam, P., 2023. The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases. Journal of Indian Society of Periodontology, 27(2), pp.126-130. DOI:10.4103/jisp.jisp_678_21.
[12]. Gomes, J.V.P., Rigolon, T.C.B., da Silveira Souza, M.S., Alvarez-Leite, J.I., Della Lucia, C.M., Martino, H.S.D. and Rosa, C.D.O.B., 2019. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition, 66, pp.192-202.
[13]. You, Y., Han, X., Guo, J., Guo, Y., Yin, M., Liu, G., Huang, W. and Zhan, J., 2018. Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. Journal of Functional Foods, 41, pp.62-71.
[14]. Ngamsamer, C., Sirivarasai, J. and Sutjarit, N., 2022. The benefits of anthocyanins against obesity-induced inflammation. Biomolecules, 12(6), p.852.
[15]. Ahn, J., Lee, H., Kim, S., Park, J. and Ha, T., 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochemical and Biophysical Research Communications, 373(4), pp.545-549.
[16]. Bartel, I., Koszarska, M., Strzałkowska, N., Tzvetkov, N.T., Wang, D., Horbańczuk, J.O., Wierzbicka, A., Atanasov, A.G. and Jóźwik, A., 2023. Cyanidin-3-O-glucoside as a nutrigenomic factor in type 2 diabetes and its prominent impact on health. International Journal of Molecular Sciences, 24(11), p.9765.
[17]. Ye, X., Chen, W., Huang, X.F., Yan, F.J., Deng, S.G., Zheng, X.D. and Shan, P.F., 2024. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: data from insulin resistant hepatocyte and diabetic mouse. Nutrition & Diabetes, 14(1), p.7.
[18]. Khanna, N., Chokkattu, J.J., Neeharika, S., Ramakrishnan, M., Shanmugam, R. and Thangavelu, L., 2023. Anti-inflammatory Activity and Cytotoxic Effect of Ginger and Rosemary-mediated Titanium Oxide Nanoparticles-based Dental Varnish. World Journal of Dentistry, 14(9), pp.761-765. DOI: 10.5005/jp-journals-10015-2299.
[19]. Juvairiya Fathima, A., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Determining the Role of Caffeic Acid on Lipogenic Regulators: An In-Silico Approach. DOI:10.21522/TIJPH.2013.SE.24.01.Art012.
[20]. Aarthi, L., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Molecular Docking Analysis of Epigallocatechin 3-Gallate [EGCG] on Fatty Acids and Carnitine Transporters Family. Doi: 10.21522/TIJPH.2013.SE.24.01.Art010.
[21]. Deepa, P., Hong, M., Sowndhararajan, K. and Kim, S., 2023. A Review of the Role of an Anthocyanin, Cyanidin-3-O-β-glucoside in Obesity-Related Complications. Plants, 12(22), p.3889.
[22]. Wang, Q., Xia, M., Liu, C., Guo, H., Ye, Q., Hu, Y., Zhang, Y., Hou, M., Zhu, H., Ma, J. and Ling, W., 2008. Cyanidin-3-O-β-glucoside inhibits iNOS and COX-2 expression by inducing liver X receptor alpha activation in THP-1 macrophages. Life Sciences, 83(5-6), pp.176-184.
[23]. Fu, Y., Wei, Z., Zhou, E., Zhang, N. and Yang, Z., 2014. Cyanidin-3-O-β-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model. Journal of Lipid Research, 55(6), pp.1111-1119.
[24]. Zhu, L., Cao, F., Hu, Z., Zhou, Y., Guo, T., Yan, S., Xie, Q., Xia, X., Yuan, H., Li, G. and Luo, F., 2024. Cyanidin-3-O-Glucoside Alleviates Alcoholic Liver Injury via Modulating Gut Microbiota and Metabolites in Mice. Nutrients, 16(5), p.694.
[25]. Lumeng, C.N., Deyoung, S.M. and Saltiel, A.R., 2007. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. American Journal of Physiology-Endocrinology and Metabolism, 292(1), pp.E166-E174.
[26]. Seymour, E.M., Lewis, S.K., Urcuyo-Llanes, D.E., Tanone, I.I., Kirakosyan, A., Kaufman, P.B. and Bolling, S.F., 2009. Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. Journal of Medicinal Food, 12(5), pp.935-942.
[27]. Serra, D., Paixão, J., Nunes, C., Dinis, T.C. and Almeida, L.M., 2013. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PloS one, 8(9), p.e73001.
[28]. Rajasekar, A. and Ganapathy, D., 2023. Effectiveness of nonsurgical periodontal therapy on salivary visfatin: a clinical and biochemical analysis. World J Dentistry, 14, p.75. Doi: 10.5005/jp-journals-10015-2176.
[29]. Rajasekar, A., 2023. Correlation of salivary visfatin levels in obese and NON-OBESE population with periodontal status. Journal of oral biology and craniofacial research, 13(1), pp.67-70. https://doi.org/10.1016/j.jobcr.2022.11.004.
[30]. Krishnan, R.P., Ramani, P., Pandiar, D. and Dinesh, Y., 2023. Gingival swelling as a first sign of clinical presentation of ligneous periodontitis in a patient with autism spectrum disorder. The Journal of the American Dental Association, 154(5), pp.427-431. doi: 10.1016/j.adaj.2022.12.005.
[31]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[32]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[33]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
[34]. Frountzas, M., Karanikki, E., Toutouza, O., Sotirakis, D., Schizas, D., Theofilis, P., Tousoulis, D. and Toutouzas, K.G., 2023. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. International Journal of Molecular Sciences, 24(11), p.9399.
[35]. Oliveira, H., Fernandes, A., F. Brás, N., Mateus, N., de Freitas, V. and Fernandes, I., 2020. Anthocyanins as antidiabetic agents—in vitro and in-silico approaches of preventive and therapeutic effects. Molecules, 25(17), p.3813.
Viewed PDF 26 2 -
Evaluation of Systemic Inflammation in Lichen Planus Using Neutrophil CD64Author: Vishnu Priya VeeraraghavanDOI: 10.21522/TIJPH.2013.SE.24.06.Art006
Evaluation of Systemic Inflammation in Lichen Planus Using Neutrophil CD64
Abstract:
Lichen Planus (LP) is a chronic inflammatory condition caused by T-cell-mediated immune responses, primarily affecting the skin and oral mucosa. The inflammatory marker CD64, which is expressed on neutrophils in response to inflammation, has demonstrated promise as a biomarker in several inflammatory disorders; however, its function in LP and its applicability for diagnosis and prognosis remain unknown. This study aims to evaluate systemic inflammation of LP patients using neutrophil CD64 as a potential biomarker. A total of five patients with LP diagnoses and five healthy controls were included in this study. nCD64 expression was measured by flow cytometric analysis from the peripheral blood samples of patients and healthy controls. The mean fluorescence intensity of nCD64 was noted and the data of patients and healthy controls were compared. A robust systemic inflammatory response was seen in LP patients, as evidenced by a substantially higher average nCD64 mean fluorescence intensity of 208.4 in comparison to 45.6 in healthy controls (p=0.05). Patients with LP exhibited a range of clinical features, including gingival desquamation, erosive lesions, and white striae. The clinical severity of LP lesions was correlated with the nCD64 mean fluorescence intensity whereas the severity of the disease was not correlated with the existing marker, erythrocyte sedimentation rate values. Thus nCD64 may be a useful biomarker for identifying systemic inflammation in patients with Lichen Planus and this may lead to better diagnosis and treatment in such patients. A large cohort study is warranted to confirm these preliminary findings.
Evaluation of Systemic Inflammation in Lichen Planus Using Neutrophil CD64
References:
[1]. Behera, A., Krishnan, R.P. and Pandiar, D., 2023. Prevalence of Civatte Bodies in Oral Lichen Planus and its Association in Cutaneous Lesions. Annals of Dental Specialty, 11(4-2023), pp.16-19.
[2]. Soundarajan, S. and Rajasekar, A., 2023. Antibacterial and anti-inflammatory effects of a novel herb-mediated nanocomposite mouthwash in plaque-induced gingivitis: a randomized controlled trial. Dental and Medical Problems, 60(3), pp.445-451.
[3]. Ramamurthy, J., 2023. Prevalence of Oral Mucosal Lesions in Patients with Type II Diabetes Mellitus: A Retrospective Analysis. World Journal of Dentistry, 14(8), pp.683-687.
[4]. Pandiar, D., Krishnan, R.P., Behera, A. and Ramani, P., 2023. Intravascular Papillary Endothelial Hyperplasia of Buccal Mucosa Masquerading as Mucocele-A Case Report. Indian Journal of Dental Research, 34(4), pp.445-447.
[5]. Sugerman, P.B., Savage, N.W., Walsh, L.J., Zhao, Z.Z., Zhou, X.J., Khan, A., Seymour, G.J., Bigby, M., 2002, The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med, 13(4), 350-65.
[6]. Vičić, M., Hlača, N., Kaštelan, M., Brajac, I., Sotošek, V., Prpić Massari, L., 2023, Comprehensive Insight into Lichen Planus Immunopathogenesis. Int J Mol Sci, 24(3),3038.
[7]. Bhattacharya, P., Budnick, I., Singh, M., Thiruppathi, M., Alharshawi, K., Elshabrawy, H., Holterman, M.J., Prabhakar, B.S., 2015, Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res, 35(8), 585-99.
[8]. Sanju, S., Jain, P., Vishnu Priya, V., Varma, p.k., Mony, U., 2023, Quantitation of mHLA-DR and nCD64 by Flow Cytometry to Study Dysregulated Host Response: The Use of QuantiBRITE™ PE Beads and Its Stability, Appl Biochem Biotechnol, 195(9):5747-5752.
[9]. Rajasekaran, K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V., Cicciù, M. and Minervini, G., Determination of red blood cell parameters for signs of iron deficiency anemia in patients with oral diseases. Minerva dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.
[10]. Sundaravadivelu, I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù, M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte balance in oral cancer patients. Minerva Dental and Oral Science. doi: 10.23736/S2724-6329.24.04902-7.
[11]. Wang, X., Li, Z.Y., Zeng, L., Zhang, A.Q., Pan, W., Gu, W., Jiang, J.X., 2015, Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: A meta-analysis. Crit Care, 19(1), 245.
[12]. Deng, X., Wang, Y., Jiang, L., Li, J., Chen, Q., 2023, Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol, 13, 1023213.
[13]. Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14. doi: 10.1007/s10266-024-01032-x.
[14]. Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI:10.29219/fnr.v68.9650.
[15]. Rajendran, P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar, A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immunity, Inflammation and Disease, 12(10), p.e70041. doi: 10.1002/iid3.70041.
[16]. Chandrasekar, M., Divya, B., Gunasekaran, N., Vasanthi, V., Kumar, H.N., Rajkumar, K., 2023, CD44 Expression in Oral Lichen Planus and Related Lesions-An Immunohistochemical Study. Indian Dermatol Online J, 14(5),624-629.
[17]. Pham, H.M., Nguyen, D.L.M., Duong, M.C., Tran, L.T., Pham, T.T.N., 2023, Diagnostic Value of Neutrophil CD64 in Sepsis Patients in the Intensive Care Unit: A Cross-Sectional Study. Diagnostics (Basel), 13(8),1427.
[18]. Hassan, U., Ghonge, T., Reddy, Jr. B., Patel, M., Rappleye, M., Taneja, I., Tanna, A., Healey, R., Manusry, N., Price, Z., Jensen, T., 2017, A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nature Communications, 8(1),15949.
[19]. Ataş, H., Cemil, B.Ç., Kurmuş, G.I., Gönül, M., 2016, Assessment of systemic inflammation with neutrophil-lymphocyte ratio in lichen planus. Postepy Dermatol Alergol, 33(3):188-92.
[20]. Lu, L., Jin, X., Zhang, Q., 2019, CD35 and CD64 of Neutrophils Can Differentiate Between Bacterial and Viral Infections in Children by Simultaneous Quantitative Analysis. Med Sci Monit, 25, 7728-7734.
[21]. Liu, Q., Gao, Y., Yang, T., Zhou, Z., Lin, K., Zhang, W., Li, T., Lu, Y., Shao, L., Zhang, W., 2022, nCD64 index as a novel inflammatory indicator for the early prediction of prognosis in infectious and non-infectious inflammatory diseases: An observational study of febrile patients. Front Immunol, 13, 905060.
[22]. Dimoula, A., Pradier, O., Kassengera, Z., Dalcomune, D., Turkan, H., Vincent, J.L., 2014, Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clinical infectious diseases, 58(6), 820-9.
[23]. Ghosh, P.S., Singh, H., Azim, A., Agarwal, V., Chaturvedi, S., Saran, S., Mishra, P., Gurjar, M., Baronia, A.K., Poddar, B., Singh, R.K., Mishra, R., 2018, Correlation of Neutrophil CD64 with Clinical Profile and Outcome of Sepsis Patients during Intensive Care Unit Stay. Indian J Crit Care Med, 22(8), 569-574.
[24]. Meier-Schiesser, B., Zecha, C., Zierold, S., Kolm, I., Röckel, M., Fröhlich, W., Mittag, N., Schmitt, C., Kumbrink, J., Hassel, J.C., Berking, C., Nashan, D., French, L.E., Vera-González, J., Dummer, R., Kerl-French, K., Heinzerling, L., 2024, Checkpoint inhibitor-induced lichen planus differs from spontaneous lichen planus on the clinical, histological, and gene expression level. JAAD Int, 15:157-164.
[25]. Rassol, H.J., Zaidan, T.F., 2023, Immunohistochemical expression of T-cell subsets (CD4 and CD8) in oral lichen planus. Pan African Medical Journal, 45(1), 147.
[26]. Agnes, S.S., Sanju, Jain, P., Varma, P.K., Mony, U., 2021, Non-classical monocytes and its potential in diagnosing sepsis post cardiac surgery. International Immunopharmacology, 99,108037
[27]. Mony, U., Sanju, S., Jain, P., Sugavanan, K., Sebastian, A., Theertha, M., Sidharthan, N., Varma, P.K., 2019. Detection of dysregulated host response by flow cytometry may pre-empt early diagnosis of sepsis after cardiac surgery. Blood, 134, 4863.
[28]. Ng, P.C., Li, G., Chui, K.M., Chu, W.C., Li, K., Wong, R.P., Chik, K.W., Wong, E., Fok, T.F., 2004, Neutrophil CD64 is a sensitive diagnostic marker for early-onset neonatal infection. Pediatr Res, 56(5), 796-803.
[29]. Allen, E., Bakke, A.C., Purtzer, M.Z., Deodhar, A., 2002, Neutrophil CD64 expression: Distinguishing acute inflammatory autoimmune disease from systemic infections. Annals of the rheumatic diseases, 61(6), 522-5.
[30]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[31]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[32]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
[33]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
Viewed PDF 36 1 -
Oral Health-Related Quality of Life of Removable Partial Denture Wearers and Related FactorsAuthor: Vishnu Priya VeeraraghavanDOI: 10.21522/TIJPH.2013.SE.24.06.Art007
Oral Health-Related Quality of Life of Removable Partial Denture Wearers and Related Factors
Abstract:
Over. 25% of the South Indian population is partial denture wearers. OHRQoL is crucial as it reflects the impact of oral health on daily functioning and overall well-being. This study investigates the oral health-related quality of life (OHRQoL) in removable partial denture (RPD) wearers in Saveetha Dental College, Chennai, using the Oral Health Impact Profile (OHIP-14). 200 RPD wearers completed questionnaires on demographic characteristics and denture-related factors, alongside the OHIP-14 questionnaire through patient interviews. OHIP-14 was interpreted using both sum and prevalence measures. The mean OHIP-14 sum was 13.80 (SD 10.08), and OHIP-14 prevalence was 44.5%. The most problematic aspects identified were physical disability and physical pain, with 27% reporting meal interruptions and 24% experiencing eating discomfort. Significant associations were found between OHRQoL and factors such as self-reported oral health, frequency of denture cleaning, and denture usage patterns (hours worn during the day, while eating, and sleeping). The study concludes that the OHRQoL of the participants was generally suboptimal and closely linked to their oral health and denture maintenance habits. This underscores the importance of improving denture care and patient education to enhance OHRQoL in RPD wearers.
Oral Health-Related Quality of Life of Removable Partial Denture Wearers and Related Factors
References:
[1]. Petersen, P. E., Bourgeois, D., Ogawa, H., Estupinan-Day, S., Ndiaye, C., 2005, The global burden of oral diseases and risks to oral health. Bull World Health Organ., 83, 661–669.
[2]. Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14. doi: 10.1007/s10266-024-01032-x.
[3]. Rajasekar, A. and Ganapathy, D., 2023. Effectiveness of nonsurgical periodontal therapy on salivary visfatin: a clinical and biochemical analysis. World J Dentistry, 14, p.75.
[4]. Rajasekaran, K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V., Cicciù, M. and Minervini, G., Determination of red blood cell parameters for signs of iron deficiency anemia in patients with oral diseases. Minerva dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.
[5]. Sundaravadivelu, I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù, M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte balance in oral cancer patients. Minerva Dental and Oral Science. doi: 10.23736/S2724-6329.24.04902-7.
[6]. de Siqueira, G. P., dos Santos, M. B., dos Santos, J. F., Marchini, L., 2013. Patients’ expectation and satisfaction with removable dental prosthesis therapy and correlation with patients’ evaluation of the dentists. Acta Odontol Scand., 71, 210–214.
[7]. Veseli, E., Staka, G. and Tovani-Palone, M.R., 2023. Evaluation of red-complex bacteria loads in complete denture patients: a pilot study. BDJ open, 9(1), p.7.
[8]. George, R., Maiti, S. and Ganapathy, D.M., 2023. Estimation of L-carnitine levels in diabetic completely edentulous patients for implant diagnosis: A cross-sectional study. Dental Research Journal, 20(1), p.96.
[9]. Sindhu, S., Maiti, S. and Nallaswamy, D., 2023. Factors affecting the accuracy of intraoral scanners-a systematic review. Annals of Dental Specialty, 11(1-2023), pp.40-52.
[10]. Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI:10.29219/fnr.v68.9650
[11]. Rajendran, P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar, A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immunity, Inflammation and Disease, 12(10), p.e70041. doi: 10.1002/iid3.70041.
[12]. United Nation. accessed 10 February 2014. World population ageing: 1950–2050, Countries of area: Iran (Islamic Republic of). Available at: http:// www.un.org/esa/population/publications/worldageing19502050/pdf/113iran.pdf.
[13]. Patturaja, K., Duraisamy, R., Nasim, I., 2020, Preference and Frequency of Bps Complete Denture in An Institutional Setup-A Retrospective Study. Journal of Complementary Medicine Research, Nov 12, 11(4), 185.
[14]. Akeel, R., 2010, Usage of removable partial dentures in Saudi male patients after 1 year telephone interview. Saudi Dent J., 22, 125–128.
[15]. Furuyama, C., Takaba, M., Inukai, M., Mulligan, R., Igarashi, Y., Baba, K., 2012, Oral health-related quality of life in patients treated by implant-supported fixed dentures and removable partial dentures. Clin Oral Implants Res, 23, 958–962.
[16]. Bae, K. H., Kim, C., Paik, D. I., Kim, J. B., 2006, A comparison of oral health-related quality of life between complete and partial removable denture-wearing older adults in Korea. J Oral Rehabil, 33, 317–322.
[17]. Ashok, N. G., Ganapathy, D., 2017, Evaluation of post-operative complaints in complete denture and removable partial denture wearers: A questionnaire-based study. Journal of Pharmaceutical Sciences and Research. Sep 1, 9(9), 1438.
[18]. Locker, D., 1988, Measuring oral health: A conceptual framework. Community Dent Health, 5, 3–18.
[19]. Slade GDSA, 1994, Development and evaluation of the oral health impact profile. Community Dent Health, 11, 3–11.
[20]. Slade, G. D., 1997, Derivation and validation of a short-form oral health impact profile. Community Dent Oral Epidemiol, 25, 284–290.
[21]. Navabi, N., Nakhaee, N., Mirzadeh, A., 2010, Validation of a Persian version of the oral health impact profile (OHIP-14). Iran J Public Health, 39, 135–139.
[22]. Ganapathi, A., Ganapathy, D., Jeevitha, M., 2021 May 13, Esthetics in Removable Partial Denture Patients Visiting University Dental Hospital. Annals of the Romanian Society for Cell Biology. 15757-69.
[23]. Visscher, C. M., Lobbezoo, F., Schuller, A. A., 2014, Dental status and oral health-related quality of life. A population-based study. J Oral Rehabil, 41, 416–422.
[24]. Szentpetery, A. G., John, M. T., Slade, G. D., Setz, J. M., 2005, Problems reported by patients before and after prosthodontic treatment. Int J Prosthodont, 18, 124–131.
[25]. Theenathayalan, M., Kabilamurthi, S., Sathiyawathie, R. S., 2019, Patient’s satisfaction and complications rates of their removable partial dentures. Drug Invention Today, 12.
[26]. Bennis, M. A., Rajendran, D., 2020, Oral Health-Related Quality of Life Among Fixed Partial Denture Patients Treated by Undergraduates-A Teaching Hospital Based Retrospective Study. International Journal of Pharmaceutical Research (09752366).
[27]. Wolfart, S., Weyer, N., Kern, M., 2012, Patient attendance in a recall program after prosthodontic rehabilitation: a 5-year followup. Int J Prosthodont, 25, 491–496.
[28]. Wu, J. H., Yang, Y. H., Wang, C. H., Lee, H. E., Du, J. K., 2012, Effects of denture maintenance on satisfaction levels of Taiwanese elderly using removable partial dentures: A pilot study. Gerodontology, 29, e458–e463.
[29]. Abuzar, M. A., Kahwagi, E., Yamakawa, T., 2012, Investigating oral health-related quality of life and self-perceived satisfaction with partial dentures. J Investig Clin Dent, 3, 109–117.
[30]. Wakabayashi, N., Yatabe, M., Ai, M., Sato, M., Nakamura, K., 1998, The influence of some demographic and clinical variables on psychosomatic traits of patients requesting replacement removable partial dentures. J Oral Rehabil, 25, 507–512.
[31]. Frank, R. P., Brudvik, J. S., Leroux, B., Milgrom, P., Hawkins, N., 2000, Relationship between the standards of removable partial denture construction, clinical acceptability, and patient satisfaction. J Prosthet Dent, 83, 521–527.
[32]. Kimura, A., Arakawa, H., Noda, K., Yamazaki, S., Hara, E. S., Mino, T. et al. 2012, Response shift in oral health-related quality of life measurement in patients with partial edentulism. J Oral Rehabil, 39, 44–54.
[33]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[34]. Koyama, S., Sasaki, K., Yokoyama, M., Sasaki, T., Hanawa, S., 2010, Evaluation of factors affecting the continuing use and patient satisfaction with Removable Partial Dentures over 5 years. J Prosthodont Res, 54:97–101.
[35]. Witter, D. J., De Haan, A. F., Kayser, A. F., Van Rossum, G. M., 1994. A 6-year follow-up study of oral function in shortened dental arches. Part II: Craniomandibular dysfunction and oral comfort. J Oral Rehabil., 21, 353–366.
[36]. Ha, J. E., Heo, Y. J., Jin, B. H., Paik, D. I., Bae, K. H., 2012, The impact of the National Denture Service on oral health-related quality of life among poor elders. J Oral Rehabil, 39, 600–607.
[37]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[38]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[39]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 34 1 -
Comprehensive Review of Dental Implant Surface Characterization: Techniques and Clinical ImplicationsAuthor: Vishnu PriyaDOI: 10.21522/TIJPH.2013.SE.24.06.Art008
Comprehensive Review of Dental Implant Surface Characterization: Techniques and Clinical Implications
Abstract:
The surface features of dental implants are critical to their effectiveness because they affect the osseointegration process and biological interactions. This paper examines the many approaches to surface characterization of dental implants with a focus on additive and subtractive methods. The efficiency of subtractive techniques, such as laser microtexturing, sandblasting, acid etching, and anodization, in enhancing surface roughness and biocompatibility is examined. By using these methods, microstructural characteristics that promote cell adhesion and quicken osseointegration can be produced. The potential of additive techniques, including coatings made of zirconia and hydroxyapatite or calcium phosphate, to improve bone integration and production, is investigated. The evaluation also emphasizes how various implant manufacturers apply surface changes and cutting-edge technologies, which are critical for maximizing implant longevity and performance. The use of nanoparticles such as titanium dioxide, zirconium dioxide, and zinc oxide in recent developments in implant surface coatings is highlighted because of their potential to improve bioactivity and address issues such peri-implantitis. Enhancing antibacterial qualities and bone healing with the addition of chitosan and copper and silver nanoparticles is a potential strategy. In summary, this research highlights the significance of accurate surface characterization and continuous technological progress in improving the longevity and efficacy of dental implants. Subsequent investigations ought to concentrate on enhancing these techniques and converting discoveries into better medical results.
Comprehensive Review of Dental Implant Surface Characterization: Techniques and Clinical Implications
References:
[1]. Yamamoto, S. and Shiga, H., 2018. Masticatory performance and oral health-related quality of life before and after complete denture treatment. Journal of Prosthodontic Research, 62(3), pp. 370-374.
[2]. Steele, J.G., Sanders, A.E., Slade, G.D., Allen, P.F., Lahti, S., Nuttall, N. and Spencer, A.J., 2004. How do age and tooth loss affect oral health impacts and quality of life? A study comparing two national samples. Community Dentistry and Oral Epidemiology, 32(2), pp. 107-114.
[3]. Block, M.S., 2018. Dental implants: The last 100 years. Journal of Oral and Maxillofacial Surgery, 76(1), pp. 11-26.
[4]. Khazaei, S., Firouzei, M.S., Sadeghpour, S., Jahangiri, P., Savabi, O., Keshteli, A.H. and Adibi, P., 2012. Edentulism and tooth loss in Iran: SEPAHAN systematic review No. 6. International Journal of Preventive Medicine, 3(Suppl1), p. S42.
[5]. Gupta, A., Dhanraj, M. and Sivagami, G., 2010. Status of surface treatment in endosseous implant: a literary overview. Indian Journal of Dental Research, 21(3), pp. 433-438.
[6]. Feine, J.S., 2002. The McGill consensus statement on overdentures. Int. J. Prosthodont., 15, pp. 413-414.
[7]. Rodriguez, B.R., Rizzo, S. and Zampetti, P., 2002. Considerazioni storicocliniche sull’evoluzione dell’implantologia. Rivista di Storia della Medicina XII NS, 33(1-2), pp. 149-56.
[8]. Pasqualini, U. and Pasqualini, M.E., 2009. The History of Implantology. In Treatise of Implant Dentistry: The Italian Tribute to Modern Implantology. Ariesdue.
[9]. Abraham, C.M., 2014. Suppl 1: A brief historical perspective on dental implants, their surface coatings and treatments. The Open Dentistry Journal, 8, p. 50.
[10]. Kawahara, D. and Kawahara, D., 1959. Part 1-The history and concept of implant. Journal of the Japan Prosthodontic Society, 3(1), pp. 97-100.
[11]. Sullivan, R.M., 2001. Implant dentistry and the concept of osseointegration: a historical perspective. Journal of the California Dental Association, 29(11), pp. 737-744.
[12]. Pal, T.K., 2015. Fundamentals and history of implant dentistry. Journal of the International Clinical Dental Research Organization, 7(Suppl 1), pp. S6-S12.
[13]. Branemark, P.I., 1985. Tissue-Integrated Prostheses. Osseointegration in clinical dentistry, pp. 11-344.
[14]. Rao, B.S. and Bhat, V.S., 2015. Dental implants: A boon to dentistry. Archives of Medicine and Health Sciences, 3(1), pp. 131-137.
[15]. Albrektsson, T. and Zarb, G.A., 1993. Current interpretations of the osseointegrated response: clinical significance. International Journal of Prosthodontics, 6(2).
[16]. Branemark, P.I., 1983. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry, 50(3), pp.399-410.
[17]. Sundgren, J. E., Bodö, P., Lundström, I., Berggren, A., an Hellem, S., (1985. Auger electron spectroscopic studies of stainless-steel implants. Journal of Biomedical Materials Research, 19(6), 663–671. https://doi.org/10.1002/jbm.820190606.
[18]. Albrektsson, T., and Wennerberg, A., 2004. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International journal of prosthodontics, 17(5), 536–543.
[19]. Coelho, P. G., Granjeiro, J. M., Romanos, G. E., Suzuki, M., Silva, N. R., Cardaropoli, G., Thompson, V. P., and Lemons, J. E., 2009. Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 579–596. https://doi.org/10.1002/jbm.b.31264.
[20]. Lemons J. E., 2004. Biomaterials, biomechanics, tissue healing, and immediate-function dental implants. The Journal of Oral Implantology, 30(5), 318–324. https://doi.org/10.1563/0712.1.
[21]. Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y., 2007. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials: Official publication of the Academy of Dental Materials, 23(7), 844–854. https://doi.org/10.1016/j.dental.2006.06.025
[22]. Coelho, P.G., Granjeiro, J.M., Romanos, G.E., Suzuki, M., Silva, N.R.F., Cardaropoli, G., Thompson, V.P. and Lemons, J.E. 2009b. Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials 88: 579–596.
[23]. Stanford C. M., 2008. Surface modifications of dental implants. Australian Dental Journal, 53 Suppl 1, S26–S33. https://doi.org/10.1111/j.1834-7819.2008.00038.x
[24]. Krishna Kumar, U., Ramesh Bhat, T.R., Harish, P.V., Sameer, V.K. and Gangaiah, M., 2011. Nanobiotechnology Approaches to Design Better Dental Implant Materials. Trends in Biomaterials & Artificial Organs, 25(1).
[25]. Triplett, R.G., Frohberg, U., Sykaras, N. and Woody, R.D., 2003. Implant materials, design, and surface topographies: their influence on osseointegration of dental implants. Journal of Long-Term Effects of Medical Implants, 13(6).
[26]. Ehrenfest, D.M.D., Coelho, P.G., Kang, B.S., Sul, Y.T. and Albrektsson, T., 2010. Classification of osseointegrated implant surfaces: materials, chemistry, and topography. Trends in Biotechnology, 28(4), pp. 198-206.
[27]. Søballe K., 1993. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta orthopaedica Scandinavica. Supplementum, 255, 1–58. https://doi.org/10.3109/17453679309155636
[28]. Steinemann, S.G., 1998. Titanium—the material of choice?. Periodontology 2000, 17(1), pp. 7-21.
[29]. Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A. and Steinemann, S.G., 2004. Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of Dental Research, 83(7), pp.529-533.
[30]. Sadati Tilebon, S.M., Emamian, S.A., Ramezanpour, H., Yousefi, H., Özcan, M., Naghib, S.M., Zare, Y. and Rhee, K.Y., 2022. Intelligent modeling and optimization of titanium surface etching for dental implant application. Scientific Reports, 12(1), p.7184.
[31]. Oshida, Y. and Daly, J., 1990. Fatigue damage evaluation of shot peened high strength aluminum alloy. In Surface Engineering (pp. 404-416). Dordrecht: Springer Netherlands.
[32]. Wen, X., Wang, X. and Zhang, N., 1996. Microrough surface of metallic biomaterials: a literature review. Bio-Medical Materials and Engineering, 6(3), pp.173-189.
[33]. Coelho, Paulo G., José M. Granjeiro, George E. Romanos, Marcelo Suzuki, Nelson RF Silva, Giuseppe Cardaropoli, Van P. Thompson, and Jack E. Lemons. "Basic research methods and current trends of dental implant surfaces." Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 88, no. 2 (2009): 579-596.
[34]. Ellingsen, J.E., Johansson, C.B., Wennerberg, A. and Holmén, A., 2004. Improved Retention and Bone-to-Implant Contact with Fluoride-Modified Titanium Implants. International Journal of Oral & Maxillofacial Implants, 19(5).
[35]. DeWald, A.T., Rankin, J.E., Hill, M.R., Lee, M.J. and Chen, H.L., 2004. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening. J. Eng. Mater. Technol., 126(4), pp. 465-473.
[36]. Fairand, B.P., Wilcox, B.A., Gallagher, W.J. and Williams, D.N., 1972. Laser shock‐induced microstructural and mechanical property changes in 7075 aluminium. Journal of Applied Physics, 43(9), pp. 3893-3895.
[37]. Gaggl, A., Schultes, G., Müller, W.D. and Kärcher, H., 2000. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study. Biomaterials, 21(10), pp. 1067-1073.
[38]. De Groot, K., Wolke, J.G.C. and Jansen, J.A., 1998. Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2), pp. 137-147.
[39]. Morris, H.F., Ochi, S., Spray, J.R. and Olson, J.W., 2000. Periodontal‐Type Measurements Associated with Hydroxyapatite‐Coated and Non—HA‐Coated Implants: Uncovering to 36 Months. Annals of Periodontology, 5(1), pp.56-67.
[40]. Barrere, F., Van Der Valk, C.M., Meijer, G., Dalmeijer, R.A.J., De Groot, K. and Layrolle, P., 2003. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67(1), pp.655-665.
[41]. Kohal, R.J., Weng, D., Bächle, M. and Strub, J.R., 2004. Loaded custom‐made zirconia and titanium implants show similar osseointegration: an animal experiment. Journal of Periodontology, 75(9), pp. 1262-1268.
[42]. Martin, J. Y., Schwartz, Z., Hummert, T. W., Schraub, D. M., Simpson, J., Lankford, J., Jr, Dean, D. D., Cochran, D. L., and Boyan, B. D., 1995. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). Journal of Biomedical Materials Research, 29(3), 389–401. https://doi.org/10.1002/jbm.82029031.
[43]. Weinstein, A.M., Klawitter, J.J. and Cook, S.D., 1980. Implant‐bone interface characteristics of bioglass dental implants. Journal of Biomedical Materials Research, 14(1), pp. 23-29.
[44]. Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L. and Hüttig, F., 2018. Surface characteristics of dental implants: A review. Dental Materials, 34(1), pp. 40-57.
[45]. Degidi, M., Nardi, D. and Piattelli, A., 2012. 10‐year follow‐up of immediately loaded implants with TiUnite porous anodized surface. Clinical Implant Dentistry and Related Research, 14(6), pp. 828-838.
[46]. Berglundh, T., Armitage, G., Araujo, M.G., Avila‐Ortiz, G., Blanco, J., Camargo, P.M., Chen, S., Cochran, D., Derks, J., Figuero, E. and Hämmerle, C.H., 2018. Peri‐implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. Journal of Periodontology, 89, pp. S313-S318.
[47]. Niinomi, M., 2008. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), pp. 30-42.
[48]. Chokkattu, J.J., Mary, D.J., Shanmugam, R. and Neeharika, S., 2022. Embryonic toxicology evaluation of ginger-and clove-mediated titanium oxide nanoparticles-based dental varnish with zebrafish. The Journal of Contemporary Dental Practice, 23(11), p.1158.
[49]. Dharman, S., Maragathavalli, G., Shanmugam, R. and Shanmugasundaram, K., 2023. Current perspectives of nanotherapies in the prevention and treatment of radiotherapy/chemotherapy-induced oral mucositis in head and neck cancer—A narrative review. Journal of International Oral Health, 15(6), pp.491-499.
[50]. Francis, T., Chokkattu, J.J., Neeharika, S., Ramakrishnan, M. and Thangavelu, L., 2023. Embryonic Toxicology Evaluation of Dental Varnish Using Titanium Oxide Nanoparticles Synthesized Using Ginger and Rosemary. World Journal of Dentistry, 14(9), pp.791-796.
[51]. Khanna, N., Chokkattu, J.J., Neeharika, S., Ramakrishnan, M., Shanmugam, R. and Thangavelu, L., 2023. Anti-inflammatory Activity and Cytotoxic Effect of Ginger and Rosemary-mediated Titanium Oxide Nanoparticles-based Dental Varnish. World Journal of Dentistry, 14(9), pp.761-765.
[52]. Rajasekaran, K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V., Cicciù, M. and Minervini, G., Determination of red blood cell parameters for signs of iron deficiency anemia in patients with oral diseases. Minerva dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.
[53]. Sundaravadivelu, I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù, M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte balance in oral cancer patients. Minerva Dental and Oral Science. doi: 10.23736/S2724-6329.24.04902-7.
[54]. Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI:10.29219/fnr.v68.9650.
[55]. Rajendran, P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar, A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immunity, Inflammation and Disease, 12(10), p.e70041. doi: 10.1002/iid3.70041.
[56]. Balhaddad, A.A., Kansara, A.A., Hidan, D., Weir, M.D., Xu, H.H. and Melo, M.A.S., 2019. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioactive Materials, 4, pp. 43-55.
[57]. Salaie, R.N., Besinis, A., Le, H., Tredwin, C. and Handy, R.D., 2020. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Materials Science and Engineering: C, 107, p.110210.
[58]. Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14. doi: 10.1007/s10266-024-01032-x.
[59]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[60]. Nie, L., Zhan, Y., Liu, H. and Tang, C., 2014. Novel β-type Zr–Mo–Ti alloys for biological hard tissue replacements. Materials & Design, 53, pp. 8-12.
[61]. Sanap, P., Hegde, V., Ghunawat, D., Patil, M., Nagaonkar, N. and Jagtap, V., 2020. Current applications of chitosan nanoparticles in dentistry: A review. Int J Appl Dent Sci, 6(4), pp. 81-84.
[62]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[63]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[64]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 32 1 -
Microbial Biofilm Inhibition in Dental White Spot Lesions using Crustin Derived Antimicrobial Peptide Crustin (CAMP) and Bio-assisted Sida Acuta Mediated Titanium Nanoparticles (SA_NP)Author: Shantha K SundariDOI: 10.21522/TIJPH.2013.SE.24.06.Art009
Microbial Biofilm Inhibition in Dental White Spot Lesions using Crustin Derived Antimicrobial Peptide Crustin (CAMP) and Bio-assisted Sida Acuta Mediated Titanium Nanoparticles (SA_NP)
Abstract:
White spot lesions (WSL), most commonly associated with Streptococcus mutans and Lactobacillus acidophilus are the routinely encountered, drawback in patients undergoing fixed orthodontic therapy due to poor oral hygiene, plaque and biofilm adhesion and retention. Many approaches have been reported against WSL lesions, amid a surge in reports on their antimicrobial resistance. In the present study, we aimed to evaluate two such novel formulations, cysteine-rich crusting antimicrobial peptide (CAMP) and plant-derived nanoparticles (SA_NPs) for the inhibitory activity of dental microbes. CAMP and SA_NP were isolated and characterized, according to the protocol adopted from our previous work. Followingly, the antimicrobial activity was assessed by a well diffusion method and minimum inhibitory concentration (MIC). In situ light microscopy analysis was used to evaluate their respective biofilm inhibition concentration (BIC). The results indicated a dose-dependent relation of CAMP and SA_NP. MIC of CAMP against S. mutans at 75 µg/ml was 17±0.4 mm and against L. acidophilus was 18±0.1mm, where MIC = 75 µg/ml for SA_NP, where in 17±0.1 mm zone of inhibition against S. mutans and 17±0.3 mm against L. acidophilus was noted. Maximum arrest/inhibition of biofilm growth for both S. mutans and L. acidophilus was observed at BIC= 75 μg for both CAMP and SA_NP. Therefore, newer approaches like the incorporation of green synthesized nanoparticles and curated peptide antimicrobials offer a new approach to treating microbial pathogens that are resistant to current treatment practices and for the treatment of pathogenic biofilms.
Microbial Biofilm Inhibition in Dental White Spot Lesions using Crustin Derived Antimicrobial Peptide Crustin (CAMP) and Bio-assisted Sida Acuta Mediated Titanium Nanoparticles (SA_NP)
References:
[1]. Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent;5(6):433-9.
[2]. Bishara, S.E., Ostby, A.W., 2008, White Spot lesions: Formation, prevention, and treatment. Semin Orthod.;14(3):174–82.
[3]. Julien, K.C., Buschang, P.H., Campbell, P.M., 2013, Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod.;83(4):641–7.
[4]. Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent.;5(6):433–9.
[5]. Gorelick, L., Geiger, A. M., Gwinnett, A.J., 1982, Incidence of white spot formation after bonding and banding. Am J Orthod.; 81(2):93–8.
[6]. Khoroushi, M., Kachuie, M., 2017 Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent.;8(1):11–9.
[7]. Gokce, G., Savas, S., Kucukyilmaz, E., Veli, I., 2017, Effects of toothpastes on white spot lesions around orthodontic brackets using quantitative light-induced fluorescence (QLF): An in vitro study. J Orofac Orthop.; 78(6):480–6.
[8]. Sonesson, M., Brechter, A., Lindman, R., Abdulraheem, S., Twetman, S., 2021, Fluoride varnish for white spot lesion prevention during orthodontic treatment: results of a randomized controlled trial 1 year after debonding. Eur J Orthod.; 43(4):473–7.
[9]. Gizani, S., Petsi, G., Twetman, S., Caroni, C., Makou, M., Papagianoulis, L., 2016, Effect of the probiotic bacterium Lactobacillus reuteri on white spot lesion development in orthodontic patients. Eur J Orthod.; 38(1):85–9.
[10]. Restrepo, M., Bussaneli, D.G., Jeremias, F., Cordeiro, R.C.L., Raveli, DB, Magalhães, A.C., et al., 2016, Control of White Spot Lesions with Use of Fluoride Varnish or Chlorhexidine Gel During Orthodontic Treatment- A Randomized Clinical Trial. J Clin Pediatr Dent.; 40(4):274–80.
[11]. Sivakamavalli, J., Nirosha, R., Vaseeharan, B., 2015, Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and Its Antibiofilm Activity. Appl Biochem Biotechnol.; 176(4):1084–101.
[12]. Yassaei, S., Nasr, A., Zandi, H., Motallaei, M.N., 2020, Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times. Dental Press J Orthod.; 25(2):52–60.
[13]. Espinosa-Cristóbal, L.F., López-Ruiz, N., Cabada-Tarín, D., Reyes-López, S.Y., Zaragoza-Contreras, A., Constandse-Cortéz, D., Donohué-Cornejo, A., et al., 2018, Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. Journal of Nanomaterials., (1):9248527.
[14]. Ali, A., Ismail, H., Amin, K., 2022, Effect of nanosilver mouthwash on prevention of white spot lesions in patients undergoing fixed orthodontic treatment - a randomized double-blind clinical trial. J Dent Sci.; 17(1):249–55.
[15]. Tanner, A.C.R., Sonis, A.L., Holgerson, P., Starr, J.R., Nunez, Y., Kressirer, C.A., et al., 2012, White-spot lesions and gingivitis microbiotas in orthodontic patients. J Dent Res.; 91(9):853–8.
[16]. Donkor, A.M., Ahenkorah, B., Wallah, T.A., Yakubu, A., 2023, Evaluation of extracts from and their herbal ointment for therapeutic and biological activities. Heliyon; 9(9):e19316.
[17]. Membe-Femoe, U., Kadji Fassi, J.B., Jatsa, H., Tchoffo, Y.L., Nna, D.C., Kamdoum, B.C., et al., 2022, Assessment of the Cercaricidal Activity of Burm. F. and Linn. (Malvaceae) Hydroethanolic Extracts, Cytotoxicity, and Phytochemical Studies. Evid Based Complement Alternat Med.; (1):7281144.
[18]. Veerakumar, K., Govindarajan, M., Rajeswary, M., 2013, Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res.; 112(12):4073–85.
[19]. Jablonski-Momeni, A., Korbmacher-Steiner, H., Heinzel-Gutenbrunner, M., Jablonski, B., Jaquet, W., Bottenberg, P., 2019, Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep.; 9(1):269.
[20]. Justino, A.B., Teixeira, R.R., Peixoto, L.G., Jaramillo, O.L.B., Espindola, F.S., 2017, Effect of saliva collection methods and oral hygiene on salivary biomarkers. Scand J Clin Lab Invest.;77(6):415–22.
[21]. Zachrisson, B.U., Brobakken, B.O., 1978, Clinical comparison of direct versus indirect bonding with different bracket types and adhesives. Am J Orthod.; 74(1):62–78.
[22]. Manoharan, V., Kumar, S., Arumugam, S.B., Anand, V., Krishnamoorthy, S., Methippara, J.J., 2019, Is Resin Infiltration a Microinvasive Approach to White Lesions of Calcified Tooth Structures: A Systemic Review. Int J Clin Pediatr Dent.; 12(1):53–8.
[23]. Cai, Y., Liao, Y., Brandt, B.W., Wei, X., Liu, H., Crielaard, W., et al., 2017, The Fitness Cost of Fluoride Resistance for Different Strains in Biofilms. Front Microbiol.; 8:1630.
[24]. Moraes, G., Zambom, C., Siqueira, W.L., 2021, Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals; 14(8).
[25]. Kulshrestha, S., Khan, S., Hasan, S., Khan, M.E., Misba, L., Khan, A.U., 2016, Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol.; 100(4):1901–14.
[26]. Nguyen, S., Escudero, C., Sediqi, N., Smistad, G., Hiorth, M., 2017, Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci; 104:326–34.
[27]. Ibrahim, M.A., Priyadarshini, B., Neo, J., Fawzy, A.S.,2017, Characterization of Chitosan/TiO Nano-Powder Modified Glass-Ionomer Cement for Restorative Dental Applications. J Esthet Restor Dent.; 29(2):146–56.
[28]. Covarrubias, C., Trepiana, D., Corral, C., 2018, Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent Mater J.; 37(3):379–84.
[29]. Sebelemetja, M., Moeno, S., Patel, M., 2020, Anti-acidogenic, anti-biofilm and slow-release properties of Dodonaea viscosa var. angustifolia flavone stabilized polymeric nanoparticles. Arch Oral Biol.; 109:104586.
[30]. Liu, Y., Busscher, H.J., Zhao, B., Li, Y., Zhang, Z., van der Mei, H.C., et al., 2016, Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. ACS Nano.; 10(4):4779–89.
[31]. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P., 2018, “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology; 16(1):84.
[32]. Abolarinwa, T.O., Ajose, D.J., Oluwarinde, B.O., Fri, J., Montso, K.P., Fayemi, O.E., et al., 2022, Plant-derived nanoparticles as alternative therapy against Diarrheal pathogens in the era of antimicrobial resistance: A review. Front Microbiol.; 13:1007115.
[33]. Saravanan, A., Maruthapandi, M., Das, P., Luong, JHT., Gedanken, A., 2021, Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomaterials (Basel);11(2).
[34]. Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., et al., 2018, Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ.; (6)5186.
[35]. Großkopf, A., Simm, A., 2020, Carbohydrates in nutrition: friend or foe? Z Gerontol Geriatr.; 53(4):290–4.
[36]. Selvaraju, N., Ganesh, P.S., Palrasu, V., Venugopal, G., Mariappan, V., 2022, Evaluation of Antimicrobial and Antibiofilm Activity of Fruit Juice Based Carbon Dots against. ACS Omega.; 7(41):36227–34.
[37]. Somboonwiwat, K., Marcos, M., Tassanakajon, A., Klinbunga, S., Aumelas, A., Romestand, B., et al., 2005, Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 29(10):841–51.
[38]. Liu, F., Liu, Y., Li, F., Dong, B., Xiang, J., 2005, Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Mar Biotechnol.; 7(6):600–8.
[39]. Kang, C.J., Wang, J.X., Zhao, X.F., Yang, X.M., Shao, H.L., Xiang, J.H., 2004, Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.; 16(4):513–25.
[40]. Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono, I., Aoki, T., et al., 2002, Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar Biotechnol.; 4(5):487–94.
[41]. Supungul, P., Tang, S., Maneeruttanarungroj, C., Rimphanitchayakit, V., Hirono, I., Aoki, T., et al., 2008, Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 32(1):61–70.
[42]. Yang, S., Huang, H., Wang, F., Aweya, J.J., Zheng, Z., Zhang, Y., 2018, Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids.; 50(8):995–1005.
[43]. Wang, Z., de la Fuente-Núñez, C., Shen, Y., Haapasalo, M., Hancock, R.E.W., 2015, Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide. PLoS One.; 10(7)-0132512.
[44]. Zhang, W., Xu, X., Zhang, J., Ye, T., Zhou, Q., Xu, Y., Li, W., Hu, Z., et al., 2022, Discovery and characterization of a New Crustin antimicrobial peptide from amphibalanus amphitrite. Pharmaceutics.; 14(2):413.
[45]. Zhang, J., Li, F., Wang, Z., Xiang, J., 2007, Cloning and recombinant expression of a crustin-like gene from Chinese shrimp, Fenneropenaeus chinensis. J Biotechnol.; 127(4):605–14.
[46]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[47]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[48]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 29 0 -
Fabrication and Characterization of PVA/Tricalcium Phosphate/Quercetin Doped Silver Membrane for Guided Bone RegenerationAuthor: Gayathri RDOI: 10.21522/TIJPH.2013.SE.24.06.Art010
Fabrication and Characterization of PVA/Tricalcium Phosphate/Quercetin Doped Silver Membrane for Guided Bone Regeneration
Abstract:
Periodontitis is a chronic inflammatory condition of the periodontal tissue caused by Aggregatibacter actinomycetemcomitans. Periodontitis eventually also leads to bone resorption. To treat it, biocompatible and wear resistant films/membranes have been introduced to enhance and boost the process of regeneration. Synthetic polymers are commonly used in tissue engineering as they have better mechanical characteristics. In this study, PVA nanofibers were incorporated with flavonoid doped silver oxide nanoparticles to facilitate bone regeneration and control infection and inflammation. The results indicated the successful formation of a membrane with nanofiber size of 100-150mm and pore size of 1-2 microns. The FTIR and XRD analysis proved the purity of the material. The contact angle test indicated the hydrophilicity of the membrane and the biocompatibility was found and confirmed by mtt assay and the osteoconductive ability of the membrane was observed. Hence this membrane proves to be successful in causing bone formation to a certain extent.
Fabrication and Characterization of PVA/Tricalcium Phosphate/Quercetin Doped Silver Membrane for Guided Bone Regeneration
References:
[1]. Qasim SSB, Al-Otaibi D, Al-Jasser R, Gul SS, Zafar MS., 2020, An evidence-based update on the molecular mechanisms underlying periodontal diseases. Int J Mol Sci [Internet]. 21(11). Available from: http://dx.doi.org/10.3390/ijms21113829
[2]. Constantin M, Lupei M, Bucatariu SM, Pelin IM, Doroftei F, Ichim DL, et al., 2022, PVA/Chitosan thin films containing silver nanoparticles and ibuprofen for the treatment of periodontal disease. Polymers [Internet]. 15(1). Available from: http://dx.doi.org/10.3390/polym15010004
[3]. Dos Santos DM, de Annunzio SR, Carmello JC, Pavarina AC, Fontana CR, Correa DS., 2022, Combining coaxial electrospinning and 3D printing: design of biodegradable bilayered membranes with dual drug delivery capability for periodontitis treatment. ACS Appl Bio Mater. 5(1):146–59.
[4]. Lokesh Kumar S, Binish CJ, Rajprasad J, Tabassum S, Sadaiyandi V, Ramaraj SG, et al., 2024, Synergistic fabrication, characterization, and prospective optoelectronic applications of DES grafted activated charcoal dispersed PVA films. Polym Adv Technol [Internet]. 35(5).
[5]. Sudhakar MP, Bargavi P., 2023, Fabrication and characterization of stimuli responsive scaffold/bio-membrane using novel carrageenan biopolymer for biomedical applications. Bioresource Technology Reports 21:101344.
[6]. Taubman MA, Valverde P, Han X, Kawai T., 2005, Immune response: the key to bone resorption in periodontal disease. J Periodontol. 76(11 Suppl):2033–41.
[7]. Hienz SA, Paliwal S, Ivanovski S., 2015, Mechanisms of bone resorption in periodontitis. J Immunol Res [Internet]. Available from: https://doi.org/10.1155/2015/615486
[8]. Oral hygiene in the prevention of caries and periodontal disease, 2000, Int Dent J. 50(3):129–39.
[9]. Senthil R, Anitha R, Lakshmi T., 2024, Mineralized collagen fiber-based dental implant: Novel perspectives. J Adv Oral Res 15(1):62–9.
[10]. Pihlstrom BL, McHuon RB, Oliphant TH, Ortiz-Campos C., 1983, Comparison of surgical and nonsurgical treatment of periodontal disease: A review of current studies and additional results after 6 1/2 years. J Clin Periodontol. 10(5):524–41.
[11]. Dutta S, Roy M., 2023, Recent developments in engineered magnesium scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 9(6):3010–31.
[12]. PVA/alginate/hydroxyapatite films for controlled release of amoxicillin for the treatment of periodontal defects, 2019, Appl Surf Sci. 495:143543.
[13]. Wang LC, Wu H, Chen XG, De Li L, Ji QX, Liu CS, et al., 2009, Biological evaluation of a novel chitosan-PVA-based local delivery system for treatment of periodontitis. J Biomed Mater Res A. 91(4):1065–76.
[14]. Martínez-Robles ÁM, Loyola-Rodríguez JP, Zavala-Alonso NV, Martinez-Martinez RE, Ruiz F, Lara-Castro RH, et al., 2016, Antimicrobial properties of biofunctionalized silver nanoparticles on clinical isolates of Streptococcus mutans and its serotypes. Nanomaterials (Basel) [Internet]. 6(7). Available from: http://dx.doi.org/10.3390/nano6070136
[15]. Halkai KR, Halkai R, Mudda JA, Shivanna V, Rathod V., 2018, Antibiofilm efficacy of biosynthesized silver nanoparticles against endodontic-periodontal pathogens: An in vitro study. J Conserv Dent. 21(6):662.
[16]. Zhang N, Zhang K, Xie X, Dai Z, Zhao Z, Imazato S, et al., 2018, Nanostructured polymeric materials with protein-repellent and anti-caries properties for dental applications. Nanomaterials (Basel) [Internet]. 8(6). Available from: http://dx.doi.org/10.3390/nano8060393
[17]. Dave PH, Vishnupriya V, Gayathri R., 2016, Herbal remedies for anxiety and depression-A review. J Adv Pharm Technol Res 9:1253.
[18]. Balaji V, Priya VV, Gayathri R., 2017, Awareness of risk factors for obesity among college students in Tamil Nadu: A Questionnaire based study. J Adv Pharm Technol Res 10:1367.
[19]. Deenadayalan A, Subramanian V, Paramasivan V, Veeraraghavan VP, Rengasamy G, Coiambatore Sadagopan J, Rajagopal P, Jayaraman S., 2021, Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach. Molecules. https://doi.org/10.3390/molecules26247689
[20]. Gayathri R, Anuradha V Phytochemical screening and total phenolic content of aqueous and acetone extracts of seed, butter, mace of nutmeg (Myristica fragrans Houtt). Int. J. Pharm. Sci. Rev. Res.
[21]. Jerusha SP, Gayathri R, Vishnupriya V., 2016, Preliminary phytochemical analysis and cytotoxicity potential of Bacopa monnieri on oral cancer cell lines. Int J Pharm Sci Rev Res 39:4–8.
[22]. Tirupathi S, Afnan L., 2024, Dental Pulp Derived Stem Cells for Facial Nerve Regeneration and Functional Repair: A Systematic Review of Animal Studies. Current Oral Health Reports 11:198–214.
[23]. Ramamurthy J, Bajpai D., 2024, Role of alginate-based scaffolds for periodontal regeneration of intrabony defects: A systematic review. World J Dent 15:181–187.
[24]. Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14.
[25]. Kumar JK, Surendranath P, Eswaramoorthy R., 2023, Regeneration of immature incisor using platelet rich fibrin: report of a novel clinical application. BMC Oral Health 23:69.
[26]. Kishen A, Cecil A, Chitra S., 2023, Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent J 35:678–683.
[27]. Karthik EVG, Priya V., Gayathri. R, Dhanraj Ganapathy., 2021, Health Benefits Of Annona Muricata-A Review. Int J Dentistry Oral Sci 8:2965–2967
[28]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[29]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[30]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 25 0 -
Revealing the Occurrence of Antimicrobial Resistance in Microbiome and Metabolic Profile of Orthodontic Patients with White Spot Lesions (WSL)Author: Shantha K SundariDOI: 10.21522/TIJPH.2013.SE.24.06.Art011
Revealing the Occurrence of Antimicrobial Resistance in Microbiome and Metabolic Profile of Orthodontic Patients with White Spot Lesions (WSL)
Abstract:
This study investigates antimicrobial-resistant (AMR) strains in the salivary microbiome of patients with White Spot Lesions (WSL) using a metagenomic approach. The aim is to better understand microbial-host interactions in dental caries and bacterial diseases in patients with fixed orthodontic appliances. Saliva samples from three WSL patients were collected and analyzed for bacterial diversity, AMR, and metabolic profiling. Metagenomic sequencing identified Acetobacter and Lactobacillus species as predominant in the saliva of WSL patients, with variations in microbial diversity between samples. WSLMic3 had lower Acetobacter and higher Lactobacillus compared to WSLMic1 and WSLMic2. Additionally, ammonia-oxidizing (89.8%) and sulfate-reducing bacteria (85.4%) were the most prevalent. AMR was assessed using the Kirby-Bauer disc diffusion method, revealing the challenge of antibiotic resistance in managing oral conditions. DNA extraction was performed with the ZR Microbe DNA MiniPrep™ kit, followed by metagenomic analysis using the GAIA 2.0 workflow and GLE module for genus-level identification. Alpha and Beta diversity indices (Chao1, Shannon, Simpson) were calculated, and pathway-level metabolic profiling was predicted using Gene Ontology (GO) terms. This study highlights the importance of profiling pathogenic strains linked to WSL and the role of AMR in oral microbiota. Identifying these strains could aid in developing targeted therapies to manage WSL more effectively and address AMR challenges in orthodontic patients.
Revealing the Occurrence of Antimicrobial Resistance in Microbiome and Metabolic Profile of Orthodontic Patients with White Spot Lesions (WSL)
References:
[1]. Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent., 5, 433-9, 10.4103/2231-0762.167719.
[2]. Khoroushi, M., Kachuie, M., 2017, Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent., 8, 11-9, 10.4103/ccd.ccd_216_17.
[3]. Gopalakrishnappa, C., Gowda, K., Prabhakara, K.H., Kuehn, S., 2022, An ensemble approach to the structure-function problem in microbial communities. iScience, 18, 103761. 10.1016/j.isci.2022.103761.
[4]. Huang, Y., Zhao, X., Cui, L., Huang, S., 2021, Metagenomic and Metatranscriptomic Insight into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol., 13, 728585, 10.3389/fmicb.2021.728585.
[5]. Pérez-Cobas, A.E., Gomez-Valero, L., Buchrieser, C., 2020, Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom., 6, 8, 10.1099/mgen.0.000409.
[6]. Radaic, A., Kapila, Y.L., 2021, The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J., 27, 1335-60, 10.1016/j.csbj.2021.02.010.
[7]. Belstrøm, D., Constancias, F., Liu, Y., et al., 2017, Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. NPJ Biofilms Microbiomes. 3, 23, 10.1038/s41522-017-0031-4.
[8]. Sun, B., Liu, B., Gao, X., Xing, K., Xie, L., Guo, T., 2021, Metagenomic Analysis of Saliva Reveals Disease-Associated Microbiotas in Patients with Periodontitis and Crohn’s Disease-Associated Periodontitis. Front Cell Infect Microbiol., 11, 719411, 10.3389/fcimb.2021.719411.
[9]. Kashyap, B., Kullaa, A., 2024, Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review, Metabolites, 14, 277. 10.3390/metabo14050277.
[10]. Qiu, S., Cai, Y., Yao, H., Lin, C., Xie, Y., Tang, S., Zhang, A., 2023, Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther., 8, 132, 10.1038/s41392-023-01399-3.
[11]. Baker, J.L., Morton, J.T., Dinis, M., Alvarez, R., Tran, N.C., Knight, R., Edlund, A., 2021, Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res., 31, 64-74. 10.1101/gr.265645.120.
[12]. Harisha, S., 2005, An Introduction to Practical Biotechnology. Firewall Media, New Delhi, India.
[13]. Holt, J.G., 1994, Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins (ed), Maryland, USA.
[14]. Tang, Y.W., Stratton, C.W., 2018, Advanced Techniques in Diagnostic Microbiology: Volume 1: Techniques. Springer, New York, USA.
[15]. Procop, G.W., Church, D.L., Hall, G.S., Janda, W.M., 2020, Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. Jones & Bartlett Learning, Burlington, MA, USA.
[16]. Wayne, P.A., 2024, Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th ed., Clinical Laboratory Standards Institute. (2009). Accessed: https://clsi.org/standards/products/microbiology/documents/m02/.
[17]. Gentleman, J.F, Mullin, R.C., 1989, The distribution of the frequency of occurrence of nucleotide subsequences, based on their overlap capability. Biometrics., 45, 35-52, 10.2307/2532033.
[18]. Turner, F.S., 2014, Assessment of insert sizes and adapter content in fastq data from NexteraXT libraries. Front Genet., 30, 5. 10.3389/fgene.2014.00005.
[19]. Shi, C., Cai, L., Xun, Z. et al., 2021, Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. J Dent Sci., 16, 1264-73, 10.1186/s12903-024-04181-1.
[20]. Lozupone, C.A., Knight, R., 2008, Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev., 32, 557-78, 10.1111/j.1574-6976.2008.00111.x.
[21]. Sharma, N., Bhatia, S., Sodhi, A.S., Batra, N., 2018, Oral microbiome and health. AIMS Microbiol., 4, 42-66, 10.3934/microbiol.2018.1.42.
[22]. Sedghi, L., DiMassa, V., Harrington, A., Lynch, S.V., Kapila, Y.L., 2000, The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol., 87, 107-31, 10.1111/prd.12393.
[23]. Raghavan, S., Abu Alhaija, E.S., Duggal, M.S., Narasimhan, S., Al-Maweri, S.A., 2023, White spot lesions, plaque accumulation and salivary caries-associated bacteria in clear aligners compared to fixed orthodontic treatment. A systematic review and meta- analysis. BMC Oral Health., 23, 599, 10.1186/s12903-023- 03257-8.
[24]. Song, Z., Fang, S., Guo, T., Wen, Y., Liu, Q., Jin, Z., 2023, Microbiome and metabolome associated with white spot lesions in patients treated with clear aligners, Front Cell Infect Microbiol, 13, 1119616, 10.3389/fcimb.2023.1119616.
[25]. Altayb, H.N., Chaieb, K., Baothman, O., Alzahrani, F.A., Zamzami, M.A., Almugadam, B.S., 2022, Study of oral microbiota diversity among groups of families originally from different countries. Saudi J Biol Sci., 29, 103317. 10.1016/j.sjbs.2022.103317.
[26]. Catunda, R.Q., Altabtbaei, K., Flores-Mir, C., Febbraio, M., 2023, Pre-treatment oral microbiome analysis and salivary Stephan curve kinetics in white spot lesion development in orthodontic patients wearing fixed appliances. A pilot study. BMC Oral Health., 23, 239, 10.1186/s12903-023-02917-z.
[27]. Chowdhry, A., Kapoor, P., Bhargava, D., Bagga, D.K., 2023, Exploring the oral microbiome: an updated multidisciplinary oral healthcare perspective. Discoveries (Craiova)., 11, 165, 10.15190/d.2023.4.
[28]. Zhou, Z., Tran, P.Q., Breister, A.M. et al., 2022, METABOLIC: High-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome, 10:33. 10.1186/s40168-021-01213-8.
[29]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[29]. Sivakamavalli, J., Nirosha, R., Vaseeharan, B., 2015, Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and Its Antibiofilm Activity. Appl Biochem Biotechnol.; 176(4):1084–101.
[30]. Valli, J.S., Vaseeharan, B., 2012, Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Mater Lett.; 82:171–3.
[31]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[32] Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[33] Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp. 310-317.
Viewed PDF 28 0 -
Immunophenotyping Peripheral Blood Lymphocyte (TBNK) and beyond in Severe Periodontitis Reveals ImmunodeficiencyAuthor: Ullas MonyDOI: 10.21522/TIJPH.2013.SE.24.06.Art012
Immunophenotyping Peripheral Blood Lymphocyte (TBNK) and beyond in Severe Periodontitis Reveals Immunodeficiency
Abstract:
Bacterial biofilms and host immune responses combine intricately to cause periodontitis, a chronic inflammatory disease that gradually destroys periodontal tissues. Here, notable changes in the subsets of lymphocytes were observed. The patient had increased counts of central memory T-helper cells and different B cell subsets, but significantly lower levels of both total T and B lymphocytes, with a drop in CD4+ T cells. This pattern points to a potential immunodeficiency that may worsen periodontitis by compromising the control of inflammation. A dysregulated immune response is additionally indicated by elevated pre- and post-germinal center B cell counts and naïve cytotoxic T cell counts, which may offset decreased T cell-mediated immunity. This study uses immunophenotyping by flow cytometry to obtain the patient's immunological profile and tried to find out any possible underlying immune dysfunctions in the context of severe recurrent periodontitis. The results underscore the plausible contribution of immunological dysfunction to the endurance and intensity of periodontitis and stress the necessity of tailored immunotherapies for enhanced management of persistent cases. The study's shortcomings, despite the thorough immunophenotyping, are that it only focused on one patient, who might not be a representative sample of the broader population, and it lacked longitudinal data to evaluate changes over time. The comprehensive immunological analysis that flows cytometry offers is where the strengths are. More extensive cohorts should be used in future studies to examine the effectiveness of immunomodulatory treatments in improving treatment outcomes for patients with severe periodontitis.
Immunophenotyping Peripheral Blood Lymphocyte (TBNK) and beyond in Severe Periodontitis Reveals Immunodeficiency
References:
[1]. Slots, J., 2017, Periodontitis: facts, fallacies, and the future. Periodontology, 75(1), 7-23.
[2]. Papapanou, P.N, Sanz, M, Buduneli, N, Dietrich, T, Feres, M, Fine, D.H, Flemmig, T.F, Garcia, R, Giannobile, W.V, Graziani, F, Greenwell, H, 2018, Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. Journal of Periodontology, 89, S173-S182.
[3]. Page, R.C, Offenbacher, S, Schroeder, H.E, Seymour, G.J, Kornman, K.S, 1997, Advances in the pathogenesis of periodontitis: summary of developments, clinical implications, and future directions. Periodontology, 14(1), 216-248.
[4]. Brunsvold, M.A, 2005, Pathologic tooth migration. Journal of Periodontology, 76(6), 859-866.
[5]. Richards, D, 2014, Review finds that severe periodontitis affects 11% of the world population. Evidence-Based Dentistry, 15(3),70-71.
[6]. Kassebaum, N.J, Bernabé, E, Dahiya, M, Bhandari, B, Murray, C.J.L, Marcenes, W, 2014, Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. Journal of Dental Research, 93(11),1045-1053.
[7]. Frencken, J.E, Sharma, P, Stenhouse, L, Green, D, Laverty, D, Dietrich, T, 2017, Global epidemiology of dental caries and severe periodontitis–a comprehensive review. Journal of Clinical Periodontology, 44, S94-S105.
[8]. Borges, T.D.F, Regalo, S.C, Taba Jr, M, Siéssere, S, Mestriner Jr, W, Semprini, M, 2013, Changes in masticatory performance and quality of life in individuals with chronic periodontitis. Journal of Periodontology, 84(3), 325-331.
[9]. Graziani, F, Music, L, Bozic, D, Tsakos, G, 2019, Is periodontitis and its treatment capable of changing the quality of life of a patient? British Dental Journal, 227(7), 621-625.
[10]. Hajishengallis, G, Darveau, R.P, Curtis, M.A, 2012, The keystone-pathogen hypothesis. Nature Reviews Microbiology, 10(10), 717-725.
[11]. Bergström, J, 2004, Tobacco smoking and chronic destructive periodontal disease. Odontology, 92, 1-8.
[12]. Shi, B, Chang, M, Martin, J, Mitreva, M, Lux, R, Klokkevold, P, Sodergren, E, Weinstock, G.M, Haake, S.K, Li, H, 2015, Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis. MBio, 6(1), 10-1128.
[13]. McKinnon, K.M, 2018, Flow cytometry: an overview. Current Protocols in Immunology, 120(1), 1-11.
[14]. Pitoiset, F, Barbié, M, Monneret, G, Braudeau, C, Pochard, P, Pellegrin, I, Trauet, J, Labalette, M, Klatzmann, D, Rosenzwajg, M, 2018, A standardized flow cytometry procedure for the monitoring of regulatory T cells in clinical trials. Cytometry Part B: Clinical Cytometry, 94(5), 777-782.
[15]. Maecker, H.T, McCoy Jr, J.P, 2010, A model for harmonizing flow cytometry in clinical trials. Nature Immunology, 11(11), 975-978.
[16]. Jahan-Tigh, R.R, Ryan, C, Obermoser, G, Schwarzenberger, K, 2012, Flow cytometry. The Journal of Investigative Dermatology, 132(10), e1.
[17]. Pockley, A.G, Foulds, G.A, Oughton, J.A, Kerkvliet, N.I, Multhoff, G, 2015, Immune cell phenotyping using flow cytometry. Current Protocols in Toxicology, 66(1),18-8.
[18]. Buduneli, N, Bıçakçı, N, Keskinogˇlu, A, 2001, Flow‐cytometric analysis of lymphocyte subsets and mCD14 expression in patients with various periodontitis categories. Journal of Clinical Periodontology, 28(5),419-424.
[19]. Radhakrishnan, S., Varghese, S.S., Rajasekar, A. and Venugopalan, S., 2023. Comparative Analysis of Occlusal Force Distribution Using T-Scan in Chronic Periodontitis Patients before and after Periodontal Therapy: A Randomized Controlled Trial. World, 14(11), p.948.
[20]. Kannan, B. and Arumugam, P., 2023. The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases. Journal of Indian Society of Periodontology, 27(2), pp.126-130.
[21]. Rajasekar, A. and Ganapathy, D., 2023. Effectiveness of nonsurgical periodontal therapy on salivary visfatin: a clinical and biochemical analysis. World J Dentistry, 14, p.75.
[22]. Rajasekar, A., 2023. Correlation of salivary visfatin levels in obese and NON-OBESE population with periodontal status. Journal of oral biology and craniofacial research, 13(1), pp.67-70.
[23]. Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14.
[24]. Aarthi, L., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Molecular Docking Analysis of Epigallocatechin 3-Gallate [EGCG] on Fatty Acids and Carnitine Transporters Family. DOI: 10.21522/TIJPH.2013.SE.24.01.Art010
[25]. Hirshasri, A.G., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., The Effect of Aspalathin on SMAD2, SMAD3, TGF-β-A Major Contributor of Inflammation–An In-silico Approach. DOI: 10.21522/TIJPH.2013.SE.24.01.Art009
[26]. Juvairiya Fathima, A., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Determining the Role of Caffeic Acid on Lipogenic Regulators: An In-Silico Approach. DOI: 10.21522/TIJPH.2013.SE.24.01.Art012
[27]. Naiff, P. F, Ferraz, R, Cunha, C. F, Orlandi, P. P, Boechat, A. L, Bertho, A. L, Dos-Santos, M. C, 2014, Immunophenotyping in saliva as an alternative approach for evaluation of immunopathogenesis in chronic periodontitis. Journal of Periodontology, 85(5), e111–e120.
[28]. Afar, B, Engel, D, Clark, E. A, 1992, Activated lymphocyte subsets in adult periodontitis. Journal of Periodontal Research, 27(2), 126–133.
[29]. Zafiropoulos, G. G, Flores-de-Jacoby, L, Schoop, B, Havemann, K, Heymanns, J, 1990, Flow-cytometric analysis of lymphocyte subsets in patients with advanced periodontitis. Journal of Clinical Periodontology, 17(9), 636–641.
[30]. Walker, C.B, 1996, The acquisition of antibiotic resistance in the periodontal microflora. Periodontology, 10(1),79-88.
[31]. Balaji, S, Cholan, P. K, Victor, D. J, 2021, An emphasis of T-cell subsets as regulators of periodontal health and disease. Journal of Clinical and Translational Research, 7(5), 648–656.
[32]. Cardoso, E.M, Arosa, F.A, 2017, CD8+ T cells in chronic periodontitis: Roles and rules. Frontiers in Immunology, 8, 145.
[33]. Demoersman, J, Pochard, P, Framery, C, Simon, Q, Boisramé, S, Soueidan, A, Pers, J.O, 2018, B cell subset distribution is altered in patients with severe periodontitis. PLoS One, 13(2), e0192986.
[34]. Rajasekaran, K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V., Cicciù, M. and Minervini, G., Determination of red blood cell parameters for signs of iron deficiency anemia in patients with oral diseases. Minerva dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.
[35]. Sundaravadivelu, I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù, M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte balance in oral cancer patients. Minerva Dental and Oral Science. doi: 10.23736/S2724-6329.24.04902-7.
[36]. Gonzales, J.R, 2015, T‐and B‐cell subsets in periodontitis. Periodontology, 69(1), 181-200.
[37]. Mahanonda, R, Champaiboon, C, Subbalekha, K, Sa-Ard-Iam, N, Rattanathammatada, W, Thawanaphong, S, Rerkyen, P, Yoshimura, F, Nagano, K, Lang, N.P, Pichyangkul, S., 2016, Human memory B cells in healthy gingiva, gingivitis, and periodontitis. The Journal of Immunology, 197(3), 715-725.
[38]. Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI:10.29219/fnr.v68.9650
[39]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[40]. Rajendran, P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar, A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immunity, Inflammation and Disease, 12(10), p.e70041. doi: 10.1002/iid3.70041.
[41]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
[42]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[43]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[44]. Ginesin, O, Mayer, Y, Gabay, E, Rotenberg, D, Machtei, E. E, Coyac, B. R, Bar-On, Y, Zigdon-Giladi, H, 2023, Revealing leukocyte populations in human peri-implantitis and periodontitis using flow cytometry. Clinical Oral Investigations, 27(9), 5499–5508.
Viewed PDF 32 1 -
Development and Characterization of a Magnesium Membrane Loaded with Hyaluronic Acid, Tricalcium Phosphate, and Quercetin for Bone Healing ApplicationsAuthor: Gayathri RengasamyDOI: 10.21522/TIJPH.2013.SE.24.06.Art013
Development and Characterization of a Magnesium Membrane Loaded with Hyaluronic Acid, Tricalcium Phosphate, and Quercetin for Bone Healing Applications
Abstract:
This study aims to develop and characterize a hyaluronic acid/Tricalcium Phosphate (TCP)/quercetin-doped magnesium membrane for Guided Bone Regeneration (GBR), targeting applications in periodontal and other biomedical fields. The goal is to create a biocompatible, hydrophilic membrane with enhanced properties suitable for promoting bone regeneration. A polymeric solution containing TCP, PVA, hyaluronic acid, and quercetin-doped magnesium nanoparticles was electrospun to create nanofibrous membranes. These membranes were analyzed using FTIR for chemical interactions, XRD for nanoparticle distribution, SEM for morphology, and water contact angle measurements for hydrophilicity. Cell viability was assessed with an MTT assay using Dental Pulp Stem Cells, and bone formation potential was evaluated using MG63 and osteoclast cells with Alizarin Red staining. The fabricated membranes demonstrated significant hydrophilicity, which is critical for GBR applications. SEM analysis revealed a nanofibrous structure with appropriate pore size, facilitating cell attachment and growth. The FTIR confirmed the expected chemical bonding, while XRD verified the incorporation of magnesium-doped nanoparticles. MTT assays showed high cell viability, indicating good biocompatibility. Furthermore, the bone formation assay confirmed the membrane’s potential to support osteogenesis. These findings suggest that the hyaluronic acid/TCP/quercetin-doped magnesium membranes developed in this study exhibit favorable properties for use in guided bone regeneration, offering promising potential for addressing the limitations of current periodontal treatments and improving patient outcomes.
Development and Characterization of a Magnesium Membrane Loaded with Hyaluronic Acid, Tricalcium Phosphate, and Quercetin for Bone Healing Applications
References:
[1]. Nazir MA., 2017, Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). Apr-Jun;11(2):72-80. PMID: 28539867; PMCID: PMC5426403.
[2]. Gasner NS, Schure RS. Periodontal disease. InStatPearls [Internet] 2023 Apr 10. StatPearls Publishing.
[3]. Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, 2023, Isola G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics. Apr 21;15(4):1312. Doi: 10.3390/pharmaceutics15041312. PMID: 37111796; PMCID: PMC10143241.
[4]. Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M., 2022, Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci. Nov 29;23(23):14987. Doi: 10.3390/ijms232314987. PMID: 36499315; PMCID: PMC9735671.
[5]. Dave PH, Vishnupriya V, Gayathri R., 2016, Herbal remedies for anxiety and depression-A review. J Adv Pharm Technol Res 9:1253
[6]. Balaji V, Priya VV, Gayathri R., 2017, Awareness of risk factors for obesity among College students in Tamil Nadu: A Questionnaire based study. J Adv Pharm Technol Res 10:1367
[7]. Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB., 2020, Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials (Basel). Aug 22;10(9):1649. Doi: 10.3390/nano10091649. PMID: 32842562; PMCID: PMC7557593.
[8]. Prakoso AT, Basri H, Adanta D, Yani I, Ammarullah MI, Akbar I, Ghazali FA, Syahrom A, Kamarul T., 2023, The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines. Feb 1;11(2):427. Doi: 10.3390/biomedicines11020427. PMID: 36830961; PMCID: PMC9953537.
[9]. Gayathri R, Anuradha V Phytochemical screening and total phenolic content of aqueous and acetone extracts of seed, butter, mace of nutmeg (Myristica fragrans Houtt). Int. J. Pharm. Sci. Rev. Res.
[10]. Jerusha SP, Gayathri R, Vishnupriya V., 2016, Preliminary phytochemical analysis and cytotoxicity potential of Bacopa monnieri on oral cancer cell lines. Int J Pharm Sci Rev Res 39:4–8
[11]. Tirupathi S, Afnan L., 2024, Dental Pulp Derived Stem Cells for Facial Nerve Regeneration and Functional Repair: A Systematic Review of Animal Studies. Current Oral Health Reports 11:198–214.
[12]. Humaira, Raza Bukhari SA, Shakir HA, Khan M, Saeed S, Ahmad I, Muzammil K, Franco M, Irfan M, Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front Chem. 2022 Dec 23;10:1092123. Doi: 10.3389/fchem.2022.1092123. PMID: 36618861; PMCID: PMC9816904.
[13]. Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C., 2023, Technological advances in fibrin for tissue engineering. J Tissue Eng., Aug 14;14:20417314231190288. Doi: 10.1177/20417314231190288. PMID: 37588339; PMCID: PMC10426312.
[14]. Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH., 2023, Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res. Mar 28;10(1):16. Doi: 10.1186/s40779-023-00448-w. PMID: 36978167; PMCID: PMC10047482.
[15]. Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y., 2023, Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol. Aug 15;246:125672. Doi: 10.1016/j.ijbiomac.2023.125672. Epub 2023 Jul 3. PMID: 37406920.
[16]. Zhang X, Reagan MR, Kaplan DL., 2009, Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. Oct 5;61(12):988-1006. Doi: 10.1016/j.addr.2009.07.005. Epub 2009 Jul 28. PMID: 19643154; PMCID: PMC2774469.
[17]. Kumar JK, Surendranath P, Eswaramoorthy R., 2023, Regeneration of immature incisor using platelet rich fibrin: report of a novel clinical application. BMC Oral Health 23:69
[18]. Kishen A, Cecil A, Chitra S., 2023, Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent J 35:678–683
[19]. Ramamurthy J, Bajpai D., 2024, Role of alginate-based scaffolds for periodontal regeneration of intrabony defects: A systematic review. World J Dent 15:181–187
[20]. Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.
[21]. Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H., 2021, Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. Jul; 174:504-534. Doi: 10.1016/j.addr.2021.05.007. Epub 2021 May 13. PMID: 33991588.
[22]. Şeker Ş, Elçin AE, Elçin YM., 2023, Advances in Regenerative Medicine and Biomaterials. Methods Mol Biol.; 2575:127-152. Doi: 10.1007/978-1-0716-2716-7_7. PMID: 36301474.
[23]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[24]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[25]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 38 1 -
Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation - An in-silico ApproachAuthor: Priya VDOI: 10.21522/TIJPH.2013.SE.24.06.Art014
Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation - An in-silico Approach
Abstract:
Mirabegron, a β3-adrenoceptor agonist first developed for treating overactive bladder, has shown unexpected impacts on cancer and metabolic processes. Initially targeting the bladder's detrusor muscle, new research has revealed its potential in cancer therapy and brown adipose tissue (BAT) activation. This work employs silico approaches to evaluate how Mirabegron impacts critical cellular pathways such as AMPK, mTOR, and UCP, which are important for cancer and metabolic regulation. Docking studies show that Mirabegron binds effectively to several targets, with high affinities indicating a meaningful interaction. Specifically, it binds to AMPK at -7.0 kcal/mol, mTOR at -5.4 kcal/mol, and UCP at -7.4 kcal/mol. These interactions contain key residues, indicating that Mirabegron's influence extends beyond its original usage, potentially affecting cancer progression and metabolism.
Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation - An in-silico Approach
References:
[1]. Bhide, A.A., Digesu, G.A., Fernando, R. and Khullar, V., 2012. Mirabegron–a selective β3-adrenoreceptor agonist for the treatment of overactive bladder. Research and Reports in Urology, 4, p.41.https://doi.org/10.2147%2FRRU.S28930
[2]. Sun, K., Wang, D., Wu, G., Ma, J., Wang, T., Wu, J. and Wang, J., 2021. Mirabegron improves the irritative symptoms caused by BCG immunotherapy after transurethral resection of bladder tumors. Cancer medicine, 10(21), pp.7534-7541.https://doi.org/10.1002/cam4.4278
[3]. Bel, J.S., Tai, T.C., Khaper, N. and Lees, S.J., 2021. Mirabegron: The most promising adipose tissue beiging agent. Physiological Reports, 9(5), p.e14779. https://doi.org/10.14814/phy2.14779
[4]. Kamal, M.M., El-Abhar, H.S., Abdallah, D.M., Ahmed, K.A., Aly, N.E.S. and Rabie, M.A., 2024. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. International Immunopharmacology, 126, p.111289.https://doi.org/10.1016/j.intimp.2023.111289
[5]. Chapple, C.R., Dvorak, V., Radziszewski, P., Van Kerrebroeck, P., Wyndaele, J.J., Bosman, B., Boerrigter, P., Drogendijk, T., Ridder, A., Van Der Putten-Slob, I. and Yamaguchi, O., 2013. A phase II dose-ranging study of mirabegron in patients with overactive bladder. International Urogynecology Journal, 24, pp.1447-1458.https://doi.org/10.1007/s00192-013-2042-x
[6]. Bragg, R., Hebel, D., Vouri, S.M. and Pitlick, J.M., 2014. Mirabegron: a beta-3 agonist for overactive bladder. The Consultant Pharmacist®, 29(12), pp.823-837. DOI: https://doi.org/10.4140/TCP.n.2014.823
[7]. Jayaraman, S., Natararaj, S. and Veeraraghavan, V.P., 2024. Hesperidin Inhibits Oral Cancer Cell Growth via Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In Vitro and In Silico Analyses. Cureus, 16(2). https://doi.org/10.7759/cureus.53458
[8]. Sacco, E. and Bientinesi, R., 2012. Mirabegron: a review of recent data and its prospects in the management of overactive bladder. Therapeutic advances in Urology, 4(6), pp.315- 324.https://doi.org/10.1177/1756287212457114
[9]. Sun, X., Sui, W., Mu, Z., Xie, S., Deng, J., Li, S., Seki, T., Wu, J., Jing, X., He, X. and Wang, Y., 2023. Mirabegron displays anticancer effects by globally browning adipose tissues. Nature Communications, 14(1), p.7610. https://doi.org/10.1038/s41467-023-43350-8.
[10]. Veeraraghavan, V.P., Jayaraman, S., Rengasamy, G., Mony, U., Ganapathy, D.M., Geetha, R.V. and Sekar, D., 2021. Deciphering the role of microRNAs in neuroblastoma. Molecules, 27(1), p.99. https://doi.org/10.3390/molecules27010099
[11]. Calvani, M., Subbiani, A., Vignoli, M. and Favre, C., 2019. Spotlight on ROS andβ3 Adrenoreceptors fighting in cancer cells. Oxidative Medicine and Cellular Longevity, 2019(1), p.6346529. https://doi.org/10.1155/2019/6346529.
[12]. Kajimura, S., Seale, P., Kubota, K., Lunsford, E., Frangioni, J.V., Gygi, S.P. and Spiegelman, B.M., 2009. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 460(7259), pp.1154-1158.https://doi.org/10.1038/nature08262
[13]. Zhang, D., Sun, F., Yao, H., Bao, X., Wang, D., Cui, Y. and Wu, J., 2021. The efficacy and safety of mirabegron for the treatment of neurogenic lower urinary tract dysfunction: a systematic review and meta-analysis. Frontiers in Pharmacology, 12, p.756582. https://doi.org/10.3389/fphar.2021.756582
[14]. Steinberg, J.D., Vogel, W. and Vegt, E., 2017. Factors influencing brown fat activation in FDG PET/CT: a retrospective analysis of 15,000+ cases. The British Journal of Radiology, 90(1075), p.20170093. https://doi.org/10.1259/bjr.20170093.
[15]. Nedergaard, J. and Cannon, B., 2010. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell metabolism, 11(4), pp.268- 272. DOI: https://doi.org/10.1016/j.cmet.2010.03.007
[16]. Cannon, B. and Nedergaard, J.A.N., 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews. https://doi.org/10.1152/physrev.00015.2003
[17]. Dawood O, El-Zawahry A. Mirabegron. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
[18]. Sui, W., Li, H., Yang, Y., Jing, X., Xue, F., Cheng, J., Dong, M., Zhang, M., Pan, H., Chen, Y. and Zhang, Y., 2019. Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. Proceedings of the National Academy of Sciences, 116(22), pp.10937- 10942. https://doi.org/10.1073/pnas.1901655116.
[19]. Hardie, D.G., 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews Molecular Cell Biology, 8(10), pp.774-785. https://doi.org/10.1038/nrm2249
[20]. Laplante, M. and Sabatini, D.M., 2012. mTOR signaling in growth control and disease. cell, 149(2), pp.274-293. DOI: https://doi.org/10.1016/j.cell.2012.03.017
[21]. Chaudhary, R., Gupta, S. and Chauhan, S., 2023. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 23(4), pp.494- 502. DOI: https://doi.org/10.2174/1871530322666220902143401
[22]. Ikeda, K., Kang, Q., Yoneshiro, T., Camporez, J.P., Maki, H., Homma, M., Shinoda, K., Chen, Y., Lu, X., Maretich, P. and Tajima, K., 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine, 23(12), pp.1454-1465.https://doi.org/10.1038/nm.4429
[23]. Kannan, B. and Arumugam, P., 2023. The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases. Journal of Indian Society of Periodontology, 27(2), pp.126-130. doi: 10.4103/jisp.jisp_678_21.
[24]. Rieshy, V., Chokkattu, J.J., Rajeshkumar, S. and Neeharika, S., 2023. Mechanism of action of clove and ginger herbal formulation-mediated TiO2 nanoparticles against lactobacillus species: an in vitro study. Journal of Advanced Oral Research, 14(1), pp.61-66. https://doi.org/10.1177/23202068221142
[25]. Manivannan, H.P., Veeraraghavan, V.P. and Francis, A.P., 2024. Identification of Novel Marine Bioactive Compound as Potential Multiple Inhibitors in Triple-negative Breast Cancer-An in silico Approach. Current Computer-aided Drug Design. https://doi.org/10.2174/0115734099287118240102112337.
[26]. Hao, L., Scott, S., Abbasi, M., Zu, Y., Khan, M.S.H., Yang, Y., Wu, D., Zhao, L. and Wang, S., 2019. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. Journal of Pharmacology and Experimental Therapeutics, 369(3), pp.419-427. Doi: https://doi.org/10.1124/jpet.118.255778
[27]. Thomas, P., Selvakumar, S.C., Preethi, K.A., Ramasubramanian, A., Ramani, P. and Sekar, D., 2023. miRNA-20a: A Dual Regulator of Cell Migration and Apoptosis in Oral Squamous Cell Carcinoma:–An In Vitro Study. Journal of Orofacial Sciences, 15(2), pp.167-174. https://ouci.dntb.gov.ua/en/works/4VOQ3DZl/
[28]. Thomas, P., Preethi, K.A., Selvakumar, S.C., Ramani, P. and Sekar, D., 2023. Relevance of micro-RNAs and their targets as a diagnostic and prognostic marker in oral squamous cell carcinoma. Journal of Oral and Maxillofacial Pathology, 27(2), pp.364-373. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581285/
[29]. Zhao, L., Luo, H., Li, T., Zhao, X. and Liu, Y., 2022. β3 adrenoceptor agonist mirabegron protects against right ventricular remodeling and drives Drp1 inhibition. Cardiovascular Diagnosis and Therapy, 12(6), p.815. Doi: 10.21037/cdt-22-274
[30]. Dąbrowska, A.M. and Dudka, J., 2023. Mirabegron, a selective β3-adrenergic receptor agonist, as a potential anti-obesity drug. Journal of Clinical Medicine, 12(21), p.6897. https://doi.org/10.3390/jcm12216897
[31]. Anees, F.F., Preethi, K.A., Selvakumar, S.C., Murthykumar, K., Ganapathy, D. and Sekar, D., 2023. Prospective study: expression levels of microRNA-7-3p and its target STAT3 in head and neck cancer. Minerva Dental and Oral Science. https://pubmed.ncbi.nlm.nih.gov/37326506/.
[32]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[33]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[34]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 42 4 -
Adipokines, Osteokines and Pancreas: Key Players in Type 2 Diabetes Mellitus - A ReviewAuthor: Priya VDOI: 10.21522/TIJPH.2013.SE.24.06.Art015
Adipokines, Osteokines and Pancreas: Key Players in Type 2 Diabetes Mellitus - A Review
Abstract:
Recent studies showed the role of adipokines, osteokines, and the pancreas plays in the development of diabetes. Numerous studies have conclusively demonstrated the importance of adiponectin, leptin, insulin, and osteocalcin in the regulation and metabolism of glucose. Along with other contributing variables, pro-inflammatory and/or oxidative stress mediators like TNF-alpha and IL-6 are one of several that significantly affect the pathogenesis of type II DM and the development of insulin resistance. For many years, it was believed that there was one pathway connecting the pancreas, adipose tissue, and bone. According to recent research that highlighted the importance of the connections between these organs, insulin resistance in adipose tissues is also thought to have a role in beta cell failure. However, there are still few conclusive studies demonstrating the relationship between adipose tissue, pancreas, bone and T2DM. Further research is required to evaluate the link between these organs and developing type 2 DM patients.
Adipokines, Osteokines and Pancreas: Key Players in Type 2 Diabetes Mellitus - A Review
References:
[1]. Kaveeshwar, S.A. and Cornwall, J., 2014. The current state of diabetes mellitus in India. The Australasian Medical Journal, 7(1), p.45.
[2]. Anjana, R.M., Ali, M.K., Pradeepa, R., Deepa, M., Datta, M., Unnikrishnan, R., Rema, M. and Mohan, V., 2011. The need for obtaining accurate nationwide estimates of diabetes prevalence in India-rationale for a national study on diabetes. Indian Journal of Medical Research, 133(4), pp.369-380.
[3]. Blüher, M., 2013. Adipose tissue dysfunction contributes to obesity-related metabolic diseases. Best practice & research Clinical Endocrinology & Metabolism, 27(2), pp.163-177.
[4]. Lehr, S., Hartwig, S., Lamers, D., Famulla, S., Müller, S., Hanisch, F.G., Cuvelier, C., Ruige, J., Eckardt, K., Ouwens, D.M. and Sell, H., 2012. Identification and validation of novel adipokines released from primary human adipocytes. Molecular & Cellular Proteomics, 11(1).
[5]. Ren, Y., Zhao, H., Yin, C., Lan, X., Wu, L., Du, X., Griffiths, H.R. and Gao, D., 2022. Adipokines, hepatokines and myokines: focus on their role and molecular mechanisms in adipose tissue inflammation. Frontiers in Endocrinology, 13, p.873699.
[6]. Weir, G.C., Laybutt, D.R., Kaneto, H., Bonner-Weir, S. and Sharma, A., 2001. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes, 50(suppl_1), p.S154.
[7]. Mera, P., Laue, K., Ferron, M., Confavreux, C., Wei, J., Galán-Díez, M., Lacampagne, A., Mitchell, S.J., Mattison, J.A., Chen, Y. and Bacchetta, J., 2016. Osteocalcin signalling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metabolism, 23(6), pp.1078-1092.
[8]. Liu, S., Gao, F., Wen, L., Ouyang, M., Wang, Y., Wang, Q., Luo, L. and Jian, Z., 2017. Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells. Cellular Physiology and Biochemistry, 43(3), pp.1100-1112.
[9]. Clemens, T.L. and Karsenty, G., 2011. The osteoblast: an insulin target cell controlling glucose homeostasis. Journal of Bone and Mineral Research, 26(4), pp.677-680.
[10]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[11]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research, 30(6), pp.877-880.
[12]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.
Viewed PDF 29 3