Extraction and Partial Characterization of Deacetylated Chitin from Cuttlefish Sepia kobiensis and their Free Radical Inhibition Efficacy

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art088

Authors : Pasiyappazham Ramasamy, Aarthi Lakshmanan, Yagniyasree Manogaran

Abstract:

This research aimed to extract and describe a functional polymeric compound from Sepia kobiensis cuttlebone and investigate its potential to impede the oxidation process. Cuttlebone waste is readily available and regularly discarded, making it an ideal resource for extracting useful bioactive compounds. The isolation technique created a pure polymeric substance by solvent extraction, precipitation, and purification. Several analytical methods, such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM), were utilized to describe the isolated polymeric material. The study found that the separated material has a specific polymeric structure with functional groups linked to antioxidant action. Furthermore, the study evaluated the bioactivity of the isolated substance by measuring its ability to suppress oxidation processes in a model system. The material demonstrated high antioxidant activity by preventing reactive oxygen species (ROS) formation and scavenging free radicals. This action was attributed to the presence of antioxidant moieties within the structure as well as its polymeric nature. Finally, a bioactive polymeric substance with significant antioxidant properties was successfully isolated and characterized from the cuttlebone of Sepia kobiensis. The findings demonstrate how cuttlebone debris may be a valuable source of bioactive compounds and aid in the development of naturally occurring antioxidants for application in the culinary, cosmetic, and pharmaceutical industries. Further research is required to properly investigate its bioactivities and understand the underlying mechanisms of action.


References:

[1].   Ramasamy, P., Subhapradha, N., Shanmugam, V., & Shanmugam, A., 2014, Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885). International Journal of Biological Macromolecules64, 202-212.

[2].   Seedevi, P., Moovendhan, M., Vairamani, S., & Shanmugam, A., 2017, Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadiInternational Journal of Biological Macromolecules99, 519-529.

[3].   Vairamani, S., Subhapradha, N., Ramasamy, P., Raveendran, S., Srinivasan, A., & Shanmugam, A., 2013, Physicochemical characteristics and antioxidant efficacy of chitosan from the internal shell of spineless cuttlefish Sepiella inermisPreparative Biochemistry and Biotechnology43(7), 696-716.

[4].   Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & De La Caba, K., 2017, Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules105, 1358-1368.

[5].   Sivaperumal, P., Kamala, K., Ganapathy, D. M., Dharani, G., Sundarrajan, S., Ramakrishna, S., 2023, Fabrication of AgNPs mediated fibrous membrane from Rhizophora mucronata mangrove plant extract for biological properties. Journal of Drug Delivery Science and Technology, 86, 104710.

[6].   Qin, Y., Li, P., 2020, Antimicrobial chitosan conjugates: Current synthetic strategies and potential applications. International Journal of Molecular Sciences21(2), 499.

[7].   Goy, R. C., Britto, D. D., & Assis, O. B., 2009, A review of the antimicrobial activity of chitosan. Polímeros19, 241-247.

[8].   Pauline, C. R., Akshita, Pavithra, T., Kannan, K., Sivaperumal, P., 2024, Characterization and Biological Activity of Silver Nanoparticles from (Rhizophora mucronata) Mangrove Extract. Nano LIFE, 2450018.

[9].    Karagozlu, M. Z., Kim, S. K., 2014, Anticancer effects of chitin and chitosan derivatives. Advances in Food and Nutrition Research72, 215-225.

[10].  Wei, L., Tan, W., Wang, G., et al., 2019, The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts. Carbohydrate Polymers226, 115256.

[11].  Bagheri-Khoulenjani, S., Taghizadeh, S. M., Mirzadeh, H., 2009, An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydrate Polymers78(4), 773-778.

[12].  Peers, S., Montembault, A., Ladavière, C., 2020, Chitosan hydrogels for sustained drug delivery. Journal of Controlled Release326, 150-163.

[13].  Das, L., Das, P., Bhowal, A., Bhattachariee, C., 2020, Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environmental Technology & Innovation18, 100664.

[14].  Islam, M. M., Shahruzzaman, M., Biswas., et al., 2020, Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials5(1), 164-183.

[15].  Kamala, K., Sivaperumal, P., 2023, Predominance of multi-drug resistant extended spectrum β lactamase producing bacteria from marine fishes. Environmental Pollution323, 121314.

[16].  Younes, I., Rinaudo, M., 2015, Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs13(3), 1133-1174.

[17].  Varma, R., Pratihar, A., Pasumpon, N., Vasudevan, S., 2022, Extraction and Characterization of Chitosan from the Cuttlebone of Spineless Cuttlefish, Sepiella inermis.

[18].  Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., 1992, Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry40(6), 945-948.

[19].  Xing, R., Yu, H., Liu, S., et al., 2005, Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorganic & Medicinal Chemistry13(4), 1387-1392.

[20].  Dinis, T. C., Madeira, V. M., Almeida, L. M., 1994, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics315(1), 161-169.

[21].   Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., 2003, Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer44(26), 7939-7952.

[22].  Jothi, N., Nachiyar, R. K., 2013, Identification and isolation of chitin and chitosan from cuttle bone of Sepia prashadi Winckworth, 1936. Global Journal of Biotechnology & Biochemistry8(2), 33-39.

[23].  Karthik, R., Manigandan, V., Saravanan, R., et al., 2016, Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonisInternational Journal of Biological Macromolecules84, 319-328.

[24].  Varma, R., Vasudevan, S., 2020, Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus. ACS Omega5(32), 20224-20230.

[25].  Varun, T. K., Senani, S., Jayapal, N., et al., 2017, Extraction of Chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Veterinary World10(2), 170.

[26].  Subhapradha, N. S., Ramasamy, P. R., Shanmugam, V. S., et al., 2013, Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius. Food Chemistry, 2013, Vol. 141, No. 2, 907-913.

[27].  Jeffery, R. S., Morris, R. W., Denham, R. A., 1991, Coronal alignment after total knee replacement. The Journal of Bone & Joint Surgery Britsh Volume73(5), 709-714.

[28].  Rasti, H., Parivar, K., Baharara, J., et al., 2017, Chitin from the mollusc chiton: Extraction, characterization and chitosan preparation. Iranian Journal of Pharmaceutical Research: IJPR16(1), 366.

[29].  Sudatta, B. P., Sugumar, V., Varma, R., Nigariga, P., 2020, Extraction, characterization and antimicrobial activity of chitosan from pen shell, Pinna bicolor. International Journal of Biological Macromolecules163, 423-430.

[30].  Vino, A. B., Ramasamy, P., Shanmugam, V., Shanmugam, A., 2012, Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine2(1), S334-S341.

[31].   Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., Elsabee, M. Z., 2009, Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers77(2), 410-419.

[32].  Yen, M. T., Tseng, Y. H., Li, R. C., Mau, J. L., 2007, Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Science and Technology40(2), 255-261.