Molecular Docking and ADME Profiling of 5-(Substituted Benzylidene)-2-(Arylamino)-1,3-Thiazol-4(5H)-ones: Insights into Pharmacokinetics and Binding Interactions

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art086

Authors : Periasamy Anbu, Prajwal Lourdes Lobo, Boja Poojary, Lydia J., M. Suhas, P. A. Vivekanand, L. Ramya, B. Kalaivani, S. Harikumar, S. Thennarasu, P. Kamaraj, S. Jayanthi, Navaneetha K. Kumar, R. Arulnangai

Abstract:

In the quest for effective cancer therapeutics, the optimization of pharmacokinetics, toxicity profiles, and efficacy is crucial. This study introduces a novel series of 5-(substituted benzylidene)-2-(arylamino)-1,3-thiazol-4(5H)-ones, synthesized to explore their potential as anti-cancer agents. These compounds were specifically designed based on the promising anti-tumour activity of 5-arylidene-4-thiazolidinone derivatives, known for their efficacy against MDA-MB-231 (human breast cancer cell line). To assess these new thiazol-4-ones, we used sophisticated in silico methods to perform pharmacokinetic ADME predictions and molecular docking simulations. Our molecular docking studies utilized FlexX to compare the binding affinities of these compounds with known drugs: Gestrinone (targeting EGFR alpha for breast cancer), Vandetanib (targeting VEGFR-2), and KU0058948 (targeting Poly ADP ribose polymerase for ovarian cancer). These comparative analyses revealed significant interactions with these key cancer targets. In addition, ADME predictions were performed using the iLOG predictor from Swiss ADMET software, demonstrating favourable properties for absorption, distribution, and bioavailability. Interestingly, compounds with fluorine substitutions at positions 2 or 4 of the acylamino ring showed encouraging activity and satisfied Lipinski and Veber's rules-based drug-likeness requirements, indicating that they could make good candidates for therapeutics. Furthermore, these compounds showed low toxicity levels, enhancing their suitability for further development.


References:

[1].   Alam, M. K., Alqhtani, N. R., Alnufaiy, B., et al., 2024, A systematic review and meta-analysis of the impact of resveratrol on oral cancer: potential therapeutic implications. BMC Oral Health, 24, 412.

[2].   Aboul-Fadl, T., Radwan, A. A., Attia, M. I., Al-Dhfyan, A., Abdel-Aziz, H.A. 2012, Schiff bases of indoline-2,3-dione (isatin) with potential antiproliferative activity. Chem Cent J, 6, 49.

[3].   Pourbasheer, E., Amanlou, M., 2014, 3D-QSAR analysis of anti-cancer agents by CoMFA and CoMSIA. Med Chem Res, 23, 800-809.

[4].   Seboletswe, P., Cele, N., Singh, P., 2023, Thiazolidinone-heterocycle frameworks: A concise review of their pharmacological significance. ChemMedChem, 18, e202200618.

[5].   Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec-Kononowicz, K., Gzell, A., 2006, Anticancer thiopyrano[2,3-d] [1,3] thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg Med Chem, 14, 5230-5240.

[6].   Kaminskyy, D., Zimenkovsky, B., Lesyk, R., 2009, Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur J Med Chem, 44, 3627-3636.

[7].   Vicini, P., Geronikaki, A., Anastasia, K., Incerti, M., Zani, F., 2006, Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem, 14, 3859-3864.

[8].   Elbarbary, A. A., Khodair, A. L., Pedersen, E. B., Nielsen, C, 1994, Synthesis and evaluation of antiviral activity of 2′-deoxyuridines with 5-methylene-2-thiohydantoin substituents in the 5-position. Monatsh Chem, 125, 593-598.

[9].   Rydzik, E., Szadowska, A., Kaminska, A., 1984, Synthesis of benzylidene derivatives of 3-o, 3-m and 3-p-chlorophenylhydantoin and the study of their anticonvulsant action. Acta Pol Pharm, 41, 459-464.

[10].  Liu, H. L., Li, Z. C., Anthonsen, T. 2000, Synthesis and Fungicidal Activity of 2-Imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and Their 5-Arylidene Derivatives. Molecules, 5, 1055-1061.

[11].  Samir, B., Wesam, K., Ahmed, A. F., 2007, Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3, 4-dihydronaphthalene-2-carboxaldehyde. Eur J Med Chem, 42, 948-954.

[12].  Zhou, H. Y., Wu, S. H., Zhai, S. M., 2008, Design, Synthesis, cytoselective toxicity, structure–activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistantlLung cancer cells. J Med Chem, 51, 1242-1251.

[13].  Muegge, I., Rarey, M., 2001, Small molecule docking and scoring. Rev Computation Chem, 17, 1.

[14].  Irie, T., Sawa, M., Ito, S., Tanaka, C., Ro, S. G., Park, C. H., 2010. PCT. Int Appl, 2010122979.

[15].  Kumar, H., Aggarwal, N., Marwaha, M. G., et al. 2022. Thiazolidin-2,4-dione scaffold: An insight into recent advances as antimicrobial, antioxidant, and hypoglycemic agents. Molecules, 27, 6763.

[16].  Chawla, P., Singh, R., Saraf, S. K., 2012, Effect of chloro and fluoro groups on the antimicrobial activity of 2,5-disubstituted 4-thiazolidinones: a comparative study. Med Chem Res, 21, 3263-3271.

[17].  Thompson, M. A., 2004, Molecular docking using arguslab, an efficient shape-based search algorithm and the scoring function. ACS meeting, Philadelphia.

[18].  Rarey, M., Kramer, B., Lengauer, T., Klebe, G. A., 1996, A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol. 261 (1996) 470-489.

[19].  Cheng, T. M., Blundell, T. L., Fernandez-Recio, J., 2008, Structural assembly of two-domain proteins by rigid-body docking, BMC Bioinform. 9 (2008) 441.

[20].  Totrov, M., Abagyan, R., 2008, Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol, 18, 178-184.

[21].  Becke, A. D., 1993, Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys, 98, 5648-5652.

[22].  Daina, A., Michielin, O., Zoete, V., 2014, iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model, 54, 3284-3301.

[23].  E.M. Krovat, T. Steindl, T. Langer, Recent advances in docking and scoring. Current Computer-Aided Drug Design 10 (2005) 93-102.

[24].  J. Azizian, M.K. Mohammadi, O. Firuzi, N. Razzaghi-asl, R. Miri, Synthesis, biological activity and docking study of some new isatin Schiff base derivatives, Med. Chem. Res. 2 (2012) 3730-3740.

[25].  Potts, R.O., Guy, R. H., 1992, Predicting Skin Permeability. Pharm Res, 9, 663-669.

[26].  Thompson, P. E., Manallack, D. T., Blaney, F. E., Gallagher, T., 1992, Conformational studies on (+)-anatoxin-a and derivative. J Comput Aided Mol Des, 6, 287-298.

[27].  Madsen, U., Larsen, K., Liljefors, P., 2016, Tommy, Textbook of drug design and discovery. Washington DC: Taylor & Fracis, 8, 45.

[28].  Jones, G., Willett, P., 1995, Docking small-molecule ligands into active sites. Curr Opin Biotechnol, 6, 652-656.

[29].  Saini, R. S., Binduhayyim, R. I. H., Gurumurthy, V., et al., 2024, In silico assessment of biocompatibility and toxicity: molecular docking and dynamics simulation of PMMA-based dental materials for interim prosthetic restorations, J. Mater. Sci: Mater. Med. 35 (2024) 35, 28.

[30].  Penning, T. D., Zhu, G. D., Gong, J., et al., 2010, Optimization of phenyl-substituted benzimidazole carboxamide poly (ADP-ribose) polymerase inhibitors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a highly potent and efficacious inhibitor. J Med Chem, 53, 3142-3153.