In silico and In vitro Study Prediction of the Anti-inflammatory Activities of Identified Bioactive Compounds from Madhuca indica Flower Extract

Abstract:
Inflammation
is the body’s protective response to harmful stimuli such as pathogens, damaged
cells, or toxic compounds. However, chronic inflammation can lead to various
diseases, including cancer, arthritis and cardiovascular disorders. Natural
products have gained attention for their anti-inflammatory properties. This
study aims to predict the anti-inflammatory activities of bioactive compounds
found in Madhuca indica flower using both in silico and in vitro methods to
explore their therapeutic potential in managing inflammatory conditions
effectively. A flower extract of M. indica was prepared and analyzed to
identify its bioactive components. Phytochemical screening revealed the
presence of flavonoids, tannins and saponins. Fourier Transform Infrared
Spectroscopy (FTIR) confirmed the functional groups corresponding to these
compounds. The extract exhibited significant antioxidant activity in the
1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, supporting its free radical
scavenging potential and aligning its anti-inflammatory properties. Gas
Chromatography-Mass Spectrometry (GC-MS) analysis identified specific bioactive
compounds, which were further assessed through molecular docking studies using
AutoDock. The in silico studies demonstrated strong binding affinities of these
compounds toward key inflammatory markers, suggesting their therapeutic
potential. In vitro studies confirmed the extract’s anti-inflammatory effects
by showing significant inhibition of inflammatory mediators. These findings
indicate that M. indica flowers possess promising anti-inflammatory properties,
attributable to their bioactive compounds providing scientific evidence for
their potential in developing natural anti-inflammatory therapeutics. The study
highlights the medical significance of M. indica, encouraging further research
into its clinical applications for managing inflammatory disorders.
References:
[1].
Chen,
L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao,
L., 2018, Inflammatory responses and inflammation-associated diseases in
organs. Oncotarget, 9(6),7204.
https//doi.org/10.18632/oncotarget.23208
[2].
Kaur,
B. and Singh, P., 2022, Inflammation: Biochemistry, cellular targets,
anti-inflammatory agents and challenges with special emphasis on
cyclooxygenase-2. Bioorganic Chemistry, 121,105663.
https//doi.org/10.1016/j.bioorg.2022.105663
[3].
Peng,
Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C. and Xu, R., 2021,
Anti-inflammatory effects of curcumin in the inflammatory diseases: status,
limitations and countermeasures. Drug design, development and therapy,
15,4503-4525. https//doi.org/10.2147/DDDT.S327378
[4].
Majeed,
U., Shafi, A., Majeed, H., Akram, K., Liu, X., Ye, J. and Luo, Y., 2023, Grape
(Vitis vinifera L.) phytochemicals
and their biochemical protective mechanisms against leading pathologies. Food
Chemistry, 405,134762. https//doi.org/10.1016/j.foodchem.2022.134762
[5].
Gomaa,
A. A., Mohamed, H. S., Abd-Ellatief, R. B. and Gomaa, M. A., 2021, Boswellic
acids/Boswellia serrata extract as a
potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology, 29,1033-1048.
https//doi.org/10.1007/s10787-021-00841-8
[6].
Szymczak,
J., Grygiel-Górniak, B. and Cielecka-Piontek, J., 2024, Zingiber Officinale
Roscoe: The Antiarthritic Potential of a Popular Spice—Preclinical and Clinical
Evidence. Nutrients, 16(5),741.
https//doi.org/10.3390/nu16050741
[7].
Roat,
P., Hada, S., Chechani, B., Yadav, D. K., Kumar, S. and Kumari, N., 2023,
Madhuca indica: a review on the phytochemical and pharmacological
aspects. Pharmaceutical Chemistry Journal, 57(2),284-295.
https//doi.org/10.1007/s11094-023-02878-1
[8].
Rodríguez-Yoldi,
M. J., 2021, Anti-inflammatory and antioxidant properties of plant
extracts. Antioxidants, 10(6),921.
https//doi.org/10.3390/antiox10060921
[9].
Gonfa,
Y. H., Tessema, F. B., Bachheti, A., Rai, N., Tadesse, M. G., Singab, A. N.,
Chaubey, K. K. and Bachheti, R. K., 2023, Anti-inflammatory activity of
phytochemicals from medicinal plants and their nanoparticles: A review. Current
Research in Biotechnology, 6,100152.
https//doi.org/10.1016/j.crbiot.2023.100152
[10].
Ramos-González,
E. J., Bitzer-Quintero, O. K., Ortiz, G., Hernández-Cruz, J. J. and
Ramírez-Jirano, L. J., 2021, Relationship between inflammation and oxidative
stress and its effect on multiple sclerosis. Neurología. 39, 292-301.
https//doi.org/10.1016/j.nrl.2021.10.003
[11].
Chaudhary,
P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B.,
Calina, D. and Sharifi-Rad, J., 2023, Oxidative stress, free radicals and
antioxidants: Potential crosstalk in the pathophysiology of human
diseases. Frontiers in chemistry, 11,1158198.
https//doi.org/10.3389/fchem.2023.1158198
[12].
Singh,
V., Singh, J., Kushwaha, R., Singh, M., Kumar, S. and Rai, A. K., 2021,
Assessment of antioxidant activity, minerals and chemical constituents of
edible mahua (Madhuca longifolia)
flower and fruit of using principal component analysis. Nutrition &
Food Science, 51(2),387-411. https//doi.org/10.1108/nfs-04-2020-0129
[13].
Akbari,
B., Baghaei‐Yazdi, N., Bahmaie, M. and Mahdavi Abhari, F., 2022, The role of
plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3),611-633.
https//doi.org/10.1002/biof.1831
[14].
Sadybekov,
A. V. and Katritch, V., 2023, Computational approaches streamlining drug
discovery. Nature, 616(7958), pp.673-685.
https//doi.org/10.1038/s41586-023-05905-z
[15].
Krishna,
K. N., Krishnamoorthy, K., Veeraraghavan, V. P. and Jayaraman, S., 2024, In-vitro Biological Properties and In-Silico Studies on Tinospora cordifolia Stem Aqueous
Extract. Journal of Pharmacy and Bioallied Sciences, 16(Suppl
2),S1317-S1320. https//doi.org/10.4103/jpbs.jpbs_598_23
[16].
Praveen,
G., Krishnamoorthy, K., Veeraraghavan, V. P. and Jayaraman, S., 2024,
Antioxidant and Anti-Inflammatory Activity of the Ethanolic Extract of Euphorbia hirta Leaf Extract: An In
Vitro and In Silico Study. Journal of Pharmacy and Bioallied Sciences, 16(Suppl
2),S1304-S1307. https//doi.org/10.4103/jpbs.jpbs_591_23
[17].
Deaton,
A. and Cartwright, N., 2018. Understanding and misunderstanding randomized
controlled trials. Social Science & Medicine, 210,2-21.
https//doi.org/10.1016/j.socscimed.2017.12.005
[18].
Salve,
P., Vinchurkar, A., Raut, R., Chondekar, R., Lakkakula, J., Roy, A., Hossain,
M. J., Alghamdi, S., Almehmadi, M., Abdulaziz, O. and Allahyani, M., 2022, An
evaluation of antimicrobial, anticancer, anti-inflammatory and antioxidant
activities of silver nanoparticles synthesized from leaf extract of Madhuca longifolia utilizing
quantitative and qualitative methods. Molecules, 27(19),6404.
https//doi.org/10.3390/molecules27196404
[19].
Vivek-Ananth,
R. P., Mohanraj, K., Sahoo, A. K. and Samal, A., 2023, IMPPAT 2.0: An enhanced
and expanded phytochemical atlas of Indian medicinal plants. ACS omega, 8(9),8827-8845.
https//doi.org/10.1021/acsomega.3c00156
[21]. Rao, S.V.D.S.,
Ryntathiang, I., Behera, A., Saravanan, S., Prasad, M. and Jothinathan, M.K.D.,
2024, Comparative In Vitro and In Silico Analyses of Phytochemicals from Butea monosperma for Wound-Healing
Potential in Human Cells. Cureus, 16(6),e62078.
https//doi.org/10.7759/cureus.62078
[22].
Behera,
A., Jothinathan, M.K.D., Ryntathiang, I., Saravanan, S. and Murugan, R., 2024,
Comparative Antioxidant Efficacy of Green-Synthesised Selenium Nanoparticles
from Pongamia pinnata, Citrus sinensis,
and Acacia auriculiformis: An In-vitro Analysis. Cureus, 16(4),e58439.
https//doi.org/10.7759/cureus.58439
[23].
Varshan,
I. and Sankar, S., 2024, Molecular Docking Analysis of Hydroxyclavicol and
Eugenol from Betel Leaves Against Outer Membrane Protein (OmpH) of Dialister
pneumosintes. Cureus, 16(2),e53809.
https//doi.org/10.7759/cureus.53809
[24].
Sankirtha,
H., Thirumani, L., Alex, A., Neha, B., Vimal, S. and Madar, I.H., 2024,
Systematic Evaluation of Aegle marmelos-Derived Compounds: Potential
Therapeutic Agents Against Inflammation and Oxidative Stress. Cureus, 16(4),e57499.
https//doi.org/10.7759/cureus.57499
[25].
Ryntathiang,
I., Behera, A., Richard, T. and Jothinathan, M.K.D., 2024, An Assessment of the
In Vitro Antioxidant Activity of Cobalt Nanoparticles Synthesized from Millettia pinnata, Butea monosperma, and Madhuca
indica Extracts: A Comparative Study. Cureus, 16(4),e59112.
https//doi.org/10.7759/cureus.59112
[26].
Kumari,
N., Prakash, S., Sharma, N., Puri, S., Thakur, M., Singh, J., and Kumar, M.,
2024, Medicinal and aromatic plants as potential sources of bioactives along
with health-promoting activities. Current Food Science and Technology Reports,
2(4), 359-376. https://doi.org/10.1007/s43555-024-00042-8
[27].
Thiru,
S., Kola, R., Thimmaraju, M. K., Dhanalakshmi, C. S., Sharma, V., Sakthi, P.,
Maguluri, L. P., Ranganathan, L. and Lalvani, J. I. J., 2024, An analytical
characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues. Scientific
Reports, 14(1),14745. https//doi.org/10.1038/s41598-024-65393-7
[28].
Dawra,
M., Bouajila, J., El Beyrouthy, M., Taillandier, P., Nehme, N. and El Rayess,
Y., 2024, Phytochemical Profile, GC-MS Profiling and In Vitro Evaluation of
Some Biological Applications of the Extracts of Origanum syriacum L. and Cousinia
libanotica DC. Plants, 13(1),137. https://doi.org/10.3390/plants13010137
[29].
Dhayalan,
M., Parveen, S., Thirumalaisamy, S., Mohammad, F., Al-Lohedan, H. A., Riyaz, S.
U. M., Dinesh, R. A., Giri, J., Stalin, A., Reddy, G. R. and Anandakumar, N.,
2024, Evaluating the Therapeutic Importance of Gold Nanoparticles Formed by the
Biogenic Synthesis Route of Madhuca
longifolia Reduction. BioResources, 19(1),823
https//doi.org/10.15376/biores.19.1.823-841
[30].
Shabbir,
M. A., Naveed, M., Rehman, S. U., Ain, N. U., Aziz, T., Alharbi, M.,
Alsahammari, A. and Alasmari, A. F., 2023, Synthesis of iron oxide
nanoparticles from Madhuca indica plant extract and assessment of their
cytotoxic, antioxidant, anti-inflammatory, and anti-diabetic properties via
different nano informatics approaches. ACS omega, 8(37), 33358-33366.
https//doi.org/10.1021/acsomega.3c02744
[31].
Saeed,
W., Ismail, T., Qamar, M. and Esatbeyoglu, T., 2024, Bioactivity profiling and
phytochemical analysis of Carissa
carandas extracts: Antioxidant, anti-inflammatory, and anti-urinary tract
infection properties. Antioxidants, 13(9), 1037, https://doi.org/10.3390/antiox13091037
[32].
Mfotie
Njoya, E., McGaw, L. J. and Makhafola, T. J., 2024, Investigating the
Phytochemical Composition, Antioxidant, and Anti-Inflammatory Potentials of Cassinopsis ilicifolia (Hochst.) Kuntze
Extract against Some Oxidative Stress and Inflammation Molecular Markers. Current
Issues in Molecular Biology, 46(9), 9639-9658. https://doi.org/10.3390/cimb46090573
[33].
Badukale,
N. A., Panchale, W. A., Manwar, J. V., Gudalwar, B. R. and Bakal, R. L., 2021,
Phytochemistry, pharmacology and botanical aspects of Madhuca indica: A review. Journal of Pharmacognosy and
Phytochemistry, 10(2), 1280-1286.
https//doi.org/10.22271/phyto.2021.v10.i2q.13987
[34].
Peter,
S. J., Kumar, K. R., Manisha, P., Sangeetha, N., Raj, N. A., Kumari, U. and
Sabina, E. P., 2020, Potential activity of Madhuca
longifolia leaf extract: through In vitro, Pharmacological and in silico
studies. Research Journal of Pharmacy and Technology, 13(3),1083-1091.
https//doi.org/10.5958/0974-360X.2020.00199.7
[35].
Das,
A. P. and Agarwal, S. M., 2024, Recent advances in the area of plant-based
anti-cancer drug discovery using computational approaches. Molecular Diversity,
28(2), 901-925. https://doi.org/10.1007/s11030-022-10590-7
[36].
Sabina,
E. P., 2020, Prediction of Absorption, Distribution, Metabolism, And Excretion
Activity of The Components of Madhuca longifolia
and Its Inhibiting Target Molecule. Asian Journal of Pharmaceutical and
Clinical Research, 13(3), 148-154.
https//doi.org/10.22159/ajpcr.2020.v13i3.36671
[37].
Oyanna,
V. O. and Clarke, J. D., 2024, Mechanisms of intestinal pharmacokinetic natural
product-drug interactions. Drug Metabolism Reviews, 56(3), 285-301. https://doi.org/10.1080/03602532.2024.2386597