In silico and In vitro Study Prediction of the Anti-inflammatory Activities of Identified Bioactive Compounds from Madhuca indica Flower Extract

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art085

Authors : Mukesh Kumar Dharmalingam Jothinathan, Iadalin Ryntathiang, Archana Behera, Nakshatara Ranjith, Tejasvi Rajesh, Monisha Prasad

Abstract:

Inflammation is the body’s protective response to harmful stimuli such as pathogens, damaged cells, or toxic compounds. However, chronic inflammation can lead to various diseases, including cancer, arthritis and cardiovascular disorders. Natural products have gained attention for their anti-inflammatory properties. This study aims to predict the anti-inflammatory activities of bioactive compounds found in Madhuca indica flower using both in silico and in vitro methods to explore their therapeutic potential in managing inflammatory conditions effectively. A flower extract of M. indica was prepared and analyzed to identify its bioactive components. Phytochemical screening revealed the presence of flavonoids, tannins and saponins. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the functional groups corresponding to these compounds. The extract exhibited significant antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, supporting its free radical scavenging potential and aligning its anti-inflammatory properties. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified specific bioactive compounds, which were further assessed through molecular docking studies using AutoDock. The in silico studies demonstrated strong binding affinities of these compounds toward key inflammatory markers, suggesting their therapeutic potential. In vitro studies confirmed the extract’s anti-inflammatory effects by showing significant inhibition of inflammatory mediators. These findings indicate that M. indica flowers possess promising anti-inflammatory properties, attributable to their bioactive compounds providing scientific evidence for their potential in developing natural anti-inflammatory therapeutics. The study highlights the medical significance of M. indica, encouraging further research into its clinical applications for managing inflammatory disorders.


References:

[1].   Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L., 2018, Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6),7204. https//doi.org/10.18632/oncotarget.23208

[2].   Kaur, B. and Singh, P., 2022, Inflammation: Biochemistry, cellular targets, anti-inflammatory agents and challenges with special emphasis on cyclooxygenase-2. Bioorganic Chemistry, 121,105663. https//doi.org/10.1016/j.bioorg.2022.105663

[3].   Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C. and Xu, R., 2021, Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug design, development and therapy, 15,4503-4525. https//doi.org/10.2147/DDDT.S327378

[4].   Majeed, U., Shafi, A., Majeed, H., Akram, K., Liu, X., Ye, J. and Luo, Y., 2023, Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chemistry, 405,134762. https//doi.org/10.1016/j.foodchem.2022.134762

[5].   Gomaa, A. A., Mohamed, H. S., Abd-Ellatief, R. B. and Gomaa, M. A., 2021, Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology29,1033-1048. https//doi.org/10.1007/s10787-021-00841-8

[6].   Szymczak, J., Grygiel-Górniak, B. and Cielecka-Piontek, J., 2024, Zingiber Officinale Roscoe: The Antiarthritic Potential of a Popular Spice—Preclinical and Clinical Evidence. Nutrients, 16(5),741. https//doi.org/10.3390/nu16050741

[7].   Roat, P., Hada, S., Chechani, B., Yadav, D. K., Kumar, S. and Kumari, N., 2023, Madhuca indica: a review on the phytochemical and pharmacological aspects. Pharmaceutical Chemistry Journal, 57(2),284-295. https//doi.org/10.1007/s11094-023-02878-1

[8].   Rodríguez-Yoldi, M. J., 2021, Anti-inflammatory and antioxidant properties of plant extracts. Antioxidants, 10(6),921. https//doi.org/10.3390/antiox10060921

[9].   Gonfa, Y. H., Tessema, F. B., Bachheti, A., Rai, N., Tadesse, M. G., Singab, A. N., Chaubey, K. K. and Bachheti, R. K., 2023, Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Current Research in Biotechnology, 6,100152. https//doi.org/10.1016/j.crbiot.2023.100152

[10].  Ramos-González, E. J., Bitzer-Quintero, O. K., Ortiz, G., Hernández-Cruz, J. J. and Ramírez-Jirano, L. J., 2021, Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurología. 39, 292-301. https//doi.org/10.1016/j.nrl.2021.10.003

[11].  Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D. and Sharifi-Rad, J., 2023, Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11,1158198. https//doi.org/10.3389/fchem.2023.1158198

[12].  Singh, V., Singh, J., Kushwaha, R., Singh, M., Kumar, S. and Rai, A. K., 2021, Assessment of antioxidant activity, minerals and chemical constituents of edible mahua (Madhuca longifolia) flower and fruit of using principal component analysis. Nutrition & Food Science, 51(2),387-411. https//doi.org/10.1108/nfs-04-2020-0129

[13].  Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M. and Mahdavi Abhari, F., 2022, The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3),611-633. https//doi.org/10.1002/biof.1831

[14].  Sadybekov, A. V. and Katritch, V., 2023, Computational approaches streamlining drug discovery. Nature, 616(7958), pp.673-685. https//doi.org/10.1038/s41586-023-05905-z

[15].  Krishna, K. N., Krishnamoorthy, K., Veeraraghavan, V. P. and Jayaraman, S., 2024, In-vitro Biological Properties and In-Silico Studies on Tinospora cordifolia Stem Aqueous Extract. Journal of Pharmacy and Bioallied Sciences16(Suppl 2),S1317-S1320. https//doi.org/10.4103/jpbs.jpbs_598_23

[16].  Praveen, G., Krishnamoorthy, K., Veeraraghavan, V. P. and Jayaraman, S., 2024, Antioxidant and Anti-Inflammatory Activity of the Ethanolic Extract of Euphorbia hirta Leaf Extract: An In Vitro and In Silico Study. Journal of Pharmacy and Bioallied Sciences16(Suppl 2),S1304-S1307. https//doi.org/10.4103/jpbs.jpbs_591_23

[17].  Deaton, A. and Cartwright, N., 2018. Understanding and misunderstanding randomized controlled trials. Social Science & Medicine, 210,2-21. https//doi.org/10.1016/j.socscimed.2017.12.005

[18].  Salve, P., Vinchurkar, A., Raut, R., Chondekar, R., Lakkakula, J., Roy, A., Hossain, M. J., Alghamdi, S., Almehmadi, M., Abdulaziz, O. and Allahyani, M., 2022, An evaluation of antimicrobial, anticancer, anti-inflammatory and antioxidant activities of silver nanoparticles synthesized from leaf extract of Madhuca longifolia utilizing quantitative and qualitative methods. Molecules, 27(19),6404. https//doi.org/10.3390/molecules27196404

[19].  Vivek-Ananth, R. P., Mohanraj, K., Sahoo, A. K. and Samal, A., 2023, IMPPAT 2.0: An enhanced and expanded phytochemical atlas of Indian medicinal plants. ACS omega, 8(9),8827-8845. https//doi.org/10.1021/acsomega.3c00156

[20].  Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R. and Sadhasivam, S., 2021. Therapeutic and pharmacological efficacy of selective Indian medicinal plants–a review. Phytomedicine Plus, 1(2),100029. https//doi.org/10.1016/j.phyplu.2021.100029

[21].  Rao, S.V.D.S., Ryntathiang, I., Behera, A., Saravanan, S., Prasad, M. and Jothinathan, M.K.D., 2024, Comparative In Vitro and In Silico Analyses of Phytochemicals from Butea monosperma for Wound-Healing Potential in Human Cells. Cureus, 16(6),e62078. https//doi.org/10.7759/cureus.62078

[22].  Behera, A., Jothinathan, M.K.D., Ryntathiang, I., Saravanan, S. and Murugan, R., 2024, Comparative Antioxidant Efficacy of Green-Synthesised Selenium Nanoparticles from Pongamia pinnata, Citrus sinensis, and Acacia auriculiformis: An In-vitro Analysis. Cureus, 16(4),e58439. https//doi.org/10.7759/cureus.58439

[23].  Varshan, I. and Sankar, S., 2024, Molecular Docking Analysis of Hydroxyclavicol and Eugenol from Betel Leaves Against Outer Membrane Protein (OmpH) of Dialister pneumosintes. Cureus16(2),e53809. https//doi.org/10.7759/cureus.53809

[24].  Sankirtha, H., Thirumani, L., Alex, A., Neha, B., Vimal, S. and Madar, I.H., 2024, Systematic Evaluation of Aegle marmelos-Derived Compounds: Potential Therapeutic Agents Against Inflammation and Oxidative Stress. Cureus, 16(4),e57499. https//doi.org/10.7759/cureus.57499

[25].  Ryntathiang, I., Behera, A., Richard, T. and Jothinathan, M.K.D., 2024, An Assessment of the In Vitro Antioxidant Activity of Cobalt Nanoparticles Synthesized from Millettia pinnata, Butea monosperma, and Madhuca indica Extracts: A Comparative Study. Cureus, 16(4),e59112. https//doi.org/10.7759/cureus.59112

[26].  Kumari, N., Prakash, S., Sharma, N., Puri, S., Thakur, M., Singh, J., and Kumar, M., 2024, Medicinal and aromatic plants as potential sources of bioactives along with health-promoting activities. Current Food Science and Technology Reports, 2(4), 359-376. https://doi.org/10.1007/s43555-024-00042-8

[27].  Thiru, S., Kola, R., Thimmaraju, M. K., Dhanalakshmi, C. S., Sharma, V., Sakthi, P., Maguluri, L. P., Ranganathan, L. and Lalvani, J. I. J., 2024, An analytical characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues. Scientific Reports, 14(1),14745. https//doi.org/10.1038/s41598-024-65393-7

[28].  Dawra, M., Bouajila, J., El Beyrouthy, M., Taillandier, P., Nehme, N. and El Rayess, Y., 2024, Phytochemical Profile, GC-MS Profiling and In Vitro Evaluation of Some Biological Applications of the Extracts of Origanum syriacum L. and Cousinia libanotica DC. Plants, 13(1),137. https://doi.org/10.3390/plants13010137

[29].  Dhayalan, M., Parveen, S., Thirumalaisamy, S., Mohammad, F., Al-Lohedan, H. A., Riyaz, S. U. M., Dinesh, R. A., Giri, J., Stalin, A., Reddy, G. R. and Anandakumar, N., 2024, Evaluating the Therapeutic Importance of Gold Nanoparticles Formed by the Biogenic Synthesis Route of Madhuca longifolia Reduction. BioResources, 19(1),823 https//doi.org/10.15376/biores.19.1.823-841

[30].  Shabbir, M. A., Naveed, M., Rehman, S. U., Ain, N. U., Aziz, T., Alharbi, M., Alsahammari, A. and Alasmari, A. F., 2023, Synthesis of iron oxide nanoparticles from Madhuca indica plant extract and assessment of their cytotoxic, antioxidant, anti-inflammatory, and anti-diabetic properties via different nano informatics approaches. ACS omega, 8(37), 33358-33366. https//doi.org/10.1021/acsomega.3c02744

[31].  Saeed, W., Ismail, T., Qamar, M. and Esatbeyoglu, T., 2024, Bioactivity profiling and phytochemical analysis of Carissa carandas extracts: Antioxidant, anti-inflammatory, and anti-urinary tract infection properties. Antioxidants, 13(9), 1037, https://doi.org/10.3390/antiox13091037

[32].  Mfotie Njoya, E., McGaw, L. J. and Makhafola, T. J., 2024, Investigating the Phytochemical Composition, Antioxidant, and Anti-Inflammatory Potentials of Cassinopsis ilicifolia (Hochst.) Kuntze Extract against Some Oxidative Stress and Inflammation Molecular Markers. Current Issues in Molecular Biology, 46(9), 9639-9658. https://doi.org/10.3390/cimb46090573

[33].  Badukale, N. A., Panchale, W. A., Manwar, J. V., Gudalwar, B. R. and Bakal, R. L., 2021, Phytochemistry, pharmacology and botanical aspects of Madhuca indica: A review. Journal of Pharmacognosy and Phytochemistry, 10(2), 1280-1286. https//doi.org/10.22271/phyto.2021.v10.i2q.13987

[34].  Peter, S. J., Kumar, K. R., Manisha, P., Sangeetha, N., Raj, N. A., Kumari, U. and Sabina, E. P., 2020, Potential activity of Madhuca longifolia leaf extract: through In vitro, Pharmacological and in silico studies. Research Journal of Pharmacy and Technology, 13(3),1083-1091. https//doi.org/10.5958/0974-360X.2020.00199.7

[35].  Das, A. P. and Agarwal, S. M., 2024, Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Molecular Diversity, 28(2), 901-925. https://doi.org/10.1007/s11030-022-10590-7

[36].  Sabina, E. P., 2020, Prediction of Absorption, Distribution, Metabolism, And Excretion Activity of The Components of Madhuca longifolia and Its Inhibiting Target Molecule. Asian Journal of Pharmaceutical and Clinical Research, 13(3), 148-154. https//doi.org/10.22159/ajpcr.2020.v13i3.36671

[37].  Oyanna, V. O. and Clarke, J. D., 2024, Mechanisms of intestinal pharmacokinetic natural product-drug interactions. Drug Metabolism Reviews, 56(3), 285-301. https://doi.org/10.1080/03602532.2024.2386597