Correlation of Tyrosine Hydroxylase, Orexin, and NFL Concentration with Parkinson's Disease

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art083

Authors : Manar K. Ahmed, Mahmmoud I. Mohammed, Sarab D. Al-Shamaa

Abstract:

The research aimed to identify serum biochemical variables that correlated to Parkinson's disease by the collection of 120 blood samples from healthy patients males coming to Ibn Sina Teaching Hospital in Mosul, from December to June 2023-2024, these samples were divided into several groups, Parkinson group, donated symbol P that included (30) samples divided into two subgroups according to age, P1 (50-65)years and P2 (66-80) years 15 blood sample for each, while Parkinson's family group donated symbol F, included (30) samples aged between (25-50) years, in addition to the Control group C that included (60) samples of Healthy people which divided into three subgroups, C1 (50-65) years, C2 (66-80) years, and C3 subgroup (25-50) years. These groups ' biochemical serum markers tyrosine hydroxylase, orexin, and neurofilament protein NFL had been compared. Results of this research showed a significant correlation as TH enzyme concentration decreased in patients' serum with Parkinson's disease in both groups P1, and P2 compared to the healthy group C1 and C2 (p≤0.01), also F group showed a significant decrease in the concentration of this enzyme compared to the healthy group C3, Besides there was a substantial difference in orexin hormone concentration level at probability level (p≤0.01)) in all groups, as hormone concentration decreased in P1subgroup patients compared to healthy C1 patients of the same age group, and this decrease increased in Parkinson's disease P2 patients compared to healthy C2. There was a significant increase in the serum's concentration of NFL protein in the P1 subgroup compared to the healthy C1 subgroup at a probability level (P≤0.01).


References:

[1].   Aarsland, D., Batzu, L., Halliday, G. M., Geurtsen, G. J., Ballard, C., Ray Chaudhuri, K., Weintraub, D., 2021, Parkinson disease-associated cognitive impairment. Nature Reviews Disease Primers, 7(1), 1-21. doi:10.1038/s41572-021-00280-3.

[2].   Bloem, B. R., Okun, M. S., Klein, C., 2021, Parkinson's disease. The Lancet, 397(10291), 2284-2303. doi:10.1016/S0140-6736(21)00218-X.

[3].   Ismael, S. S., Al-Shamaa, S. D., 2020, Mutation in microtubule-associated protein tau MAPT coding gene and its correlation with Alzheimer’s disease, International Journal of Research in Pharmaceutical Sciences, 11(4), 5150-5157, doi:10.26452/ijrps.v11i4.3119.

[4].   Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., Ghiglieri, V., 2023, Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell death & disease, 14(3), 176, doi:10.1038/s41419-023-05672-9.

[5].   Hamanaka, Y., Mizunami, M., 2019, Tyrosine hydroxylase-immunoreactive neurons in the mushroom body of the field cricket, Gryllus bimaculatus. Cell and tissue research, 376, 97-111, doi:10.1007/s00441-018-2969-9.

[6].   Sofy, S., Kakey, E., Alshamaa, S., 2014, The Protective Role of Green Tae and Ginkgo biloba Extract against Aging Dysfunction Induced by D-Galactose in Rats. Glob J Biol Agric Health Sci, 3(3), 97-101.

[7].   Borkar, C. D., Bharne, A. P., Nagalakshmi, B., Sakharkar, A. J., Subhedar, N. K., Kokare, D. M., 2018, Cocaine-and amphetamine-regulated transcript peptide (CART) alleviates MK-801-induced schizophrenic dementia-like symptoms. Neuroscience, 375, 94-107, doi:10.1016/j.neuroscience.2018.01.056.

[8].   Suzuki, K., Miyamoto, M., Miyamoto, T., Iwanami, M., Hirata, K., 2011, Sleep Disturbances Associated with Parkinson′ s Disease. Parkinson’s disease, 2011(1), 219056, doi:10.4061/2011/219056.

[9].   Justinussen, J. L., Egebjerg, C., Kornum, B. R., 2023, How hypocretin agonists may improve the quality of wake in narcolepsy. Trends in Molecular Medicine, 29(1), 61-69, doi:10.1016/j.molmed.2022.10.008.

[10].  Ng, A. S. L., Tan, Y. J., Yong, A. C. W., Saffari, S. E., Lu, Z., Ng, E. Y., Tan, E. K., 2020, Utility of plasma Neurofilament light as a diagnostic and prognostic biomarker of the postural instability gait disorder motor subtype in early Parkinson’s disease. Molecular neurodegeneration, 15, 1-8, doi:10.1186/s13024-020-00385-5.

[11].  Halloway, S., Desai, P., Beck, T., Aggarwal, N., Agarwal, P., Evans, D., Chicago Health and Aging Project, 2022, Association of neurofilament light with the development and severity of Parkinson disease. Neurology, 98(22), e2185-e2193, doi:10.1212/WNL.0000000000200338.

[12].  Yi, L. X., Tan, E. K., & Zhou, Z. D., 2024, Tyrosine Hydroxylase Inhibitors and Dopamine Receptor Agonists Combination Therapy for Parkinson’s Disease. International Journal of Molecular Sciences, 25(9), 4643, doi:10.3390/ijms25094643.

[13].  Zhou, Z. D., Saw, W. T., Ho, P. G. H., Zhang, Z. W., Zeng, L., Chang, Y. Y., Tan, E. K., 2022, The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cellular and Molecular Life Sciences, 79(12), 599, doi:10.1007/s00018-022-04574-x.

[14].  Huang, S., Zhao, Z., Ma, J., Hu, S., Li, L., Wang, Z., Zheng, J., 2021, Increased plasma orexin-A concentrations are associated with the non-motor symptoms in Parkinson’s disease patients. Neuroscience Letters, 741, 135480, doi:10.1016/j.neulet.2020.135480.

[15].  Braun, A., Manavis, J., Yamanaka, A., Ootsuka, Y., Blumbergs, P., Bobrovskaya, L., 2024, The role of orexin in Parkinson's disease. Journal of Neuroscience Research, 102(3), e25322, doi:10.1002/jnr.25322.

[16].  Oosterveld, L. P., Verberk, I. M., Majbour, N. K., El‐Agnaf, O. M., Weinstein, H. C., Berendse, H. W., van de Berg, W.D., 2020, CSF or serum neurofilament light added to α‐synuclein panel discriminates Parkinson's from controls. Movement Disorders, 35(2), 288-295, doi:10.1002/mds.27897.

[17].  Pedersen, C. C., Ushakova, A., Alves, G., Tysnes, O. B., Blennow, K., Zetterberg, H., Lange, J., 2024, Serum neurofilament light at diagnosis: a prognostic indicator for accelerated disease progression in Parkinson’s Disease. npj Parkinson's Disease, 10(1), 162, doi:10.1038/s41531-024-00768-1.

[18].  Nabizadeh, F., Mohamadzadeh, O., Hosseini, H., Rasouli, K., Afyouni, N. E., 2023, Serum neurofilament light chain in LRRK2 related Parkinson’s disease: A five years follow-up. Journal of Clinical Neuroscience, 110, 12-18, doi:10.1016/j.jocn.2023.01.015.

[19].  Teng, X., Mao, S., Wu, H., Shao, Q., Zu, J., Zhang, W., Xu, C., 2023, The relationship between serum neurofilament light chain and glial fibrillary acidic protein with the REM sleep behavior disorder subtype of Parkinson's disease. Journal of Neurochemistry, 165(2), 268-276, doi:10.1111/jnc.15780.

[20].  Praba, M. A., Venkataramaniah, K. G., Rashid, N. A., el Hasnaoul, R., Saadani, M. A. W., 2024, Association of Cell Viability in Huntington Chorea Rat Models and the Neuroprotective Role of Withania Somnifera in Public Health. Texila International Journal of Public Health, 12(4), 1-10, doi: 10.21522/TIJPH.2013.12.04.Art076.