In-silico Analysis of Single Nucleotide Polymorphisms (SNPs) in Human Pten Gene

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art070

Authors : T. Govardhan, Jyoti Brahmaiah, Usha Adiga, Alfred J. Augustine, Ramya R., Lalitha Sree K., Kavya J., Gurupawan Kumar Ganta

Abstract:

Phosphatase Tensin Homolog deleted on Chromosome 10 is a tumour suppressor gene frequently inactivated in human cancers. Single Nucleotide Polymorphisms (SNPs) are the substitution of one DNA nucleotide base with another and a commonly occurring genomic alteration. This study involved analyzing various missense SNPs of the PTEN gene using five different bioinformatics tools -SIFT, POLYPHEN, CADD, META LR, and MUTATION ASSESSOR to identify the tolerated from intolerant ones. String analysis of PTEN protein-protein interactions was also done using the STRING database. A total of 8298 missense SNPs were retrieved and analyzed using the five bioinformatics tools. Out of 8298 missense SNPs analyzed, SIFT categorized 5281 SNPs as deleterious, while POLYPHEN identified 4490 as damaging. CADD showed that 909 were disease-causing SNPs. META LR identified 2995 as damaging, and the MUTATION ASSESSOR identified 897 high-risk missense SNPs. This study shows that the various in silico tools are a good preliminary approach to identifying the harmful missense SNPs.

References:

[1].   Garcia, F. A., de O., de Andrade, E. S., & Palmero, E. I., 2022, Insights on variant analysis in silico tools for pathogenicity prediction. Frontiers in Genetics13, 1010327. https://doi.org/10.3389/fgene.2022.1010327

[2].   Weng, L. P., Smith, W. M., Dahia, P. L., Ziebold, U., Gil, E., Lees, J. A., & Eng, C., 1999, PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Research, 59(22), 5808–5814.

[3].   Fusco, N., Sajjadi, E., Venetis, K., Gaudioso, G., Lopez, G., Corti, C., Rocco, E. G., Criscitiello, C., Malapelle, U., & Invernizzi, M., 2020, PTEN alterations and their role in cancer management: Are we making headway on precision medicine? Genes11(7), 719. https://doi.org/10.3390/genes11070719

[4].   Liu, T., Wang, Y., Wang, Y., & Chan, A. M., 2019, Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers11(9), 1247. https://doi.org/10.3390/cancers11091247

[5].   Hopkins, B. D., Hodakoski, C., Barrows, D., Mense, S. M., & Parsons, R. E., 2014, PTEN function: the long and the short of it. Trends in Biochemical Sciences39(4), 183–190. https://doi.org/10.1016/j.tibs.2014.02.006

[6].   Chen, C.-Y., Chen, J., He, L., & Stiles, B. L., 2018, PTEN: Tumor suppressor and metabolic regulator. Frontiers in Endocrinology9, 338. https://doi.org/10.3389/fendo.2018.00338

[7].   Luongo, F., Colonna, F., Calapà, F., Vitale, S., Fiori, M. E., & De Maria, R., 2019, PTEN tumor-suppressor: The dam of stemness in cancer. Cancers11(8), 1076. https://doi.org/10.3390/cancers11081076

[8].   Ngeow, J., & Eng, C., 2020, PTEN in hereditary and sporadic cancer. Cold Spring Harbor Perspectives in Medicine10(4), a036087. https://doi.org/10.1101/cshperspect.a036087

[9].   Nero, C., Ciccarone, F., Pietragalla, A., & Scambia, G., 2019, PTEN and gynecological cancers. Cancers11(10), 1458. https://doi.org/10.3390/cancers11101458

[10].  Choi, S. W., Lee, Y., Shin, K., Koo, H., Kim, D., Sa, J. K., Cho, H. J., Shin, H.-M., Lee, S. J., Kim, H., Chung, S., Shin, J., Lee, C., & Nam, D.-H., 2021, Mutation-specific non-canonical pathway of PTEN as a distinct therapeutic target for glioblastoma. Cell Death & Disease12(4), 374. https://doi.org/10.1038/s41419-021-03657-0

[11].  Wang, J., Zhang, S., Zhang, J., Zhang, Z., Ma, Q., Fu, W., Chen, X., Zhao, D., Zhao, M., Di, C., & Xie, X., 2023, A novel PTEN mutant caused by polymorphism in cis-regulatory elements is involved in chemosensitivity in breast cancer. American journal of cancer research13(1), 86–104.

[12].  Deng, N., Zhou, H., Fan, H., & Yuan, Y., 2017, Single nucleotide polymorphisms and cancer susceptibility. Oncotarget8(66), 110635–110649. https://doi.org/10.18632/oncotarget.22372

[13].  Ng, P. C., & Henikoff, S., 2003, SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509

[14].  Behairy, M. Y., Soltan, M. A., Adam, M. S., Refaat, A. M., Ezz, E. M., Albogami, S., Fayad, E., Althobaiti, F., Gouda, A. M., Sileem, A. E., Elfaky, M. A., Darwish, K. M., & Alaa Eldeen, M., 2022, Computational analysis of deleterious SNPs in NRAS to assess their potential correlation with carcinogenesis. Frontiers in Genetics13, 872845. https://doi.org/10.3389/fgene.2022.872845

[15].  Ajith, A., & Subbiah, U., 2023, In silico screening of non-synonymous SNPs in human TUFT1 gene. Journal, Genetic Engineering & Biotechnology21(1), 95. https://doi.org/10.1186/s43141-023-00551-4

[16].  Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M., 2019, CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research47(D1), D886–D894. https://doi.org/10.1093/nar/gky1016

[17].  Liu, X., Wu, C., Li, C., & Boerwinkle, E., 2016, DbNSFP v3.0: A one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Human Mutation37(3), 235–241. https://doi.org/10.1002/humu.22932

[18].  Khan, I., Ansari, I. A., Singh, P., & Dass J, F. P., 2017, Prediction of functionally significant single nucleotide polymorphisms in PTEN tumor suppressor gene: An in-silico approach. Biotechnology and Applied Biochemistry64(5), 657–666. https://doi.org/10.1002/bab.1483

[19].  Naidu, C. K., & Suneetha, Y., 2016, Prediction and analysis of breast cancer related deleterious non-synonymous single nucleotide polymorphisms in the PTEN gene. Asian Pacific Journal of Cancer Prevention: APJCP17(4), 2199–2203. https://doi.org/10.7314/apjcp.2016.17.4.2199

[20].  Song, D.-D., Zhang, Q., Li, J.-H., Hao, R.-M., Ma, Y., Wang, P.-Y., & Xie, S.-Y., 2017, Single nucleotide polymorphisms rs701848 and rs2735343 in PTEN increases cancer risks in an Asian population. Oncotarget8(56), 96290–96300. https://doi.org/10.18632/oncotarget.22019

[21].  Han, M., Wu, G., Sun, P., Nie, J., Zhang, J., & Li, Y., 2015, Association of genetic polymorphisms in PTEN and additional interaction with alcohol consumption and smoking on colorectal cancer in Chinese population. International Journal of Clinical and Experimental Medicine8(11), 21629–21634

[22].  Andreassen, K. E., Kristiansen, W., Karlsson, R., Aschim, E. L., Dahl, O., Fosså, S. D., Adami, H.-O., Wiklund, F., Haugen, T. B., & Grotmol, T., 2013, Genetic variation in AKT1, PTEN and the 8q24 locus, and the risk of testicular germ cell tumor. Human Reproduction (Oxford, England)28(7), 1995–2002. https://doi.org/10.1093/humrep/det127