Extraction, Characterization and Antioxidative Potential of a Bioactive Polymeric Material from the Cuttlebone of Sepia brevimana

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art069

Authors : Pasiyappazham Ramasamy, Chandrabindu Ravi, Yagniyasree Manogaran

Abstract:

This study aimed to extract and characterize a functional polymeric chemical from Sepia brevimana cuttlebone and explore its potential to inhibit oxidative processes. Cuttlebone waste is widely available and frequently discarded, making it an excellent source for extracting beneficial bioactive chemicals. The isolation process involved solvent extraction, precipitation, and purification to produce a pure polymeric material. Several analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), were employed to characterize the isolated polymeric material. The study revealed that the isolated material possesses a unique polymeric structure with functional groups associated with antioxidant activity. The bioactivity of the substance was assessed by evaluating its efficiency in inhibiting oxidative processes in a model system. The material demonstrated excellent antioxidant activity by inhibiting the generation of reactive oxygen species (ROS) and scavenging free radicals. The presence of antioxidant moieties and the polymeric nature of the structure contributed to this activity. In conclusion, a bioactive polymeric material with strong antioxidant capabilities was successfully extracted and characterized from Sepia brevimana cuttlebone. The findings highlight the potential of cuttlebone waste as a rich source of bioactive chemicals, offering a sustainable pathway for producing natural antioxidants for applications in the culinary, cosmetic, and pharmaceutical industries. Further research is needed to comprehensively analyze its bioactivities and understand the underlying mechanisms of action.

References:

[1].   Kim, K. W., Thomas, R. L., 2007, Antioxidative activity of chitosans with varying molecular weights. Food chemistry101(1), 308-313.

[2].   Ambika, N., Sudha, G., Prasanna, R., Krishnamoorthyn, A. S., Sathianarayanan, S., Baskar, V., Muthu, T., Maksim, R., Mohammad, A. S., Jose, M. L., Miran, P., 2022, Antioxidant, antitumor, and anticoagulant activities of polysaccharide from Calocybe indica (APK2). Antioxidants. 11(9), 1694.

[3].   Xie, W., Xu, P., Liu, Q., 2001, Antioxidant activity of water-soluble chitosan derivatives. Bioorganic & Medicinal Chemistry Letters11(13), 1699-1701.

[4].   Lin, S. B., Chen, S. H., Peng, K. C., 2009, Preparation of antibacterial chito‐oligosaccharide by altering the degree of deacetylation of β‐chitosan in a Trichoderma harzianum chitinase‐hydrolysing process. Journal of the Science of Food and Agriculture89(2), 238-244.

[5].   Onsøyen, E., Skaugrud, O., 1990, Metal recovery using chitosan. Journal of Chemical Technology and biotechnology (Oxford, Oxfordshire: 1986)49(4), 395-404.

[6].   Hirano, S., Zhang, M., Chung, B. G., Kim, S. K., 2000, The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin–cellulose blended fibre at a solid state. Carbohydrate Polymers41(2), 175-179.

[7].   Subash, H. A., Santhosh, K., Kannan, K., and Pitchiah, S., 2024, Extraction of Keratin degrading enzyme from marine Actinobacteria of Nocardia sp. and their antibacterial potential against oral pathogens. Oral Oncology Reports9, p.100184.

[8].   Meyer, A. S., Isaksen, A., 1995, Application of enzymes as food antioxidants. Trends in Food Science & Technology6(9), 300-304.

[9].   Kobayashi, M., Watanabe, T., Suzuki, S., Suzuki, M., 1990, Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiology and Immunology34(5), 413-426.

[10].  Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Okawa, Y., Mikami, T., Suzuki, M., 1989, Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiology and immunology33(4), 357-367.

[11].  Kanner, J., German, J. B., Kinsella, J. E., Hultin, H. O., 1987, Initiation of lipid peroxidation in biological systems. Critical Reviews in Food Science & Nutrition25(4), 317-364.

[12].  Velioglu, Y., Mazza, G., Gao, L., Oomah, B. D., 1998, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry46(10), 4113-4117.

[13].  Ramasubburayan, R., Senthilkumar, N., Kanagaraj, K., Basumatary, S., Kathiresan, S., Manjunathan, J., Revathi, M., Selvaraj, M., Prakash, S., 2023, Environmentally benign, bright luminescent carbon dots from IV bag waste and chitosan for antimicrobial and bioimaging applications. Environmental Research238, 117182.

[14].  Xing, R., Yu, H., Liu, S., Zhang, W., Zhang, Q., Li, Z., Li, P., 2005, Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorganic & medicinal chemistry13(4), 1387-1392.

[15].  Dong, F., Xue, Q., Liu, J., Guo, Z., Zhong, H., Sun, H., 2009, The influence of amino and hydroxyl of chitosan on hydroxyl radical scavenging activity. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 1-4, IEEE.

[16].  Bersuder, P., Hole, M., Smith, G., 1998, Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists' Society75(2), 181-187.

[17].  Xing, R., Liu, S., Yu, H., Zhang, Q., Li, Z., Li, P., 2004, Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydrate research339(15), 2515-2519.

[18].  Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., 2003, Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer44(26), 7939-7952.

[19].  Jothi, N., Nachiyar, R. K., 2013, Identification and isolation of chitin and chitosan from cuttle bone of Sepia prashadi Winckworth, 1936. Global Journal of Biotechnology & Biochemistry8(2), 33-39.

[20].  Karthik, R., Manigandan, V., Saravanan, R., Rajesh, R. P., Chandrika, B., 2016, Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonisInternational Journal of Biological Macromolecules84, 319-328.

[21].  Varma, R., Vasudevan, S., 2020, Extraction, characterization, and antimicrobial activity of chitosan from horse mussel Modiolus modiolusACS omega5(32), 20224-20230.

[22].  Varun, T. K., Senani, S., Jayapal, N., Chikkerur, J., Roy, S., Tekulapally, V. B., Kumar, N., 2017, Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Veterinary world10(2), 170.

[23].  Subhapradha, N., Ramasamy, P., Shanmugam, V., Madeswaran, P., Srinivasan, A., Shanmugam, A., 2013, Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius. Food chemistry141(2), 907-913.

[24].  Jeffery, R. S., Morris, R. W., Denham, R. A., 1991, Coronal alignment after total knee replacement. The Journal of Bone & Joint Surgery British Volume73(5), 709-714, https://doi.org/10.1302/0301-620X.73B5.1894655

[25].  Rasti, H., Parivar, K., Baharara, J., Iranshahi, M., Namvar, F., 2017, Chitin from the mollusc chiton: extraction, characterization and chitosan preparation. Iranian journal of pharmaceutical research: IJPR16(1), 366.

[26].  Sudatta, B. P., Sugumar, V., Varma, R., Nigariga, P., 2020, Extraction, characterization and antimicrobial activity of chitosan from pen shell, Pinna bicolorInternational Journal of Biological Macromolecules163, 423-430.

[27].  Vino, A. B., Ramasamy, P., Shanmugam, V., Shanmugam, A., 2012, Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific journal of tropical biomedicine2(1), S334-S341.

[28].  Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., Elsabee, M. Z., 2009, Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate polymers77(2), 410-419.

[29].  Yen, M. T., Tseng, Y. H., Li, R. C., Mau, J. L., 2007, Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Science and Technology40(2), 255-261.

[30].  Rajalakshmi, A., Krithiga, N., Jayachitra, A., 2013, Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East J. Sci. Res16(10), 1446-1451.