Green Synthesis of Selenium Nanoparticles using Vaccinium Subg. Oxycoccus for Antioxidant, Anti-Inflammatory, and Cytotoxic Effect

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art061

Authors : T. Lakshmi, S Rajeshkumar, G. Dinesh

Abstract:

This study elucidates the synthesis and multifaceted applications of selenium nanoparticles (SeNPs) utilizing Vaccinium subg. Oxycoccus extract as a green and sustainable methodology. The UV-visible spectroscopy analysis demonstrated the successful synthesis of SeNPs, characterized by a distinct absorption peak at 380 nm. The antioxidant activities of Vaccinium subg. Oxycoccus-mediated SeNPs were systematically evaluated through three assays. The DPPH assay revealed concentration-dependent radical scavenging activities, surpassing the standard (ascorbic acid) at higher concentrations. Additionally, the Hydrogen Peroxide assay showcased commendable antioxidant properties, while the FRAP assay indicated a concentration-dependent capacity to reduce ferric ions, suggesting potential in counteracting oxidative stress. Inhibition of protein denaturation was examined using the BSA assay, revealing a significant inhibitory effect of Vaccinium subg. Oxycoccus-mediated SeNPs that increased with concentration. Denaturation studies, employing the Egg Albumin Denaturation Assay, displayed a concentration-dependent rise in denaturation percentages, either matching or exceeding the standard's anti-inflammatory activity. The Membrane Stabilization Assay illustrated the concentration-dependent enhancement of membrane stability by SeNPs, exhibiting efficacy comparable to or exceeding the standard. Cytotoxicity assessment through the Brine Shrimp lethality assay demonstrated a concentration-dependent decline in brine shrimp nauplii viability, suggesting a potential cytotoxic impact of Vaccinium subg. Oxycoccus-mediated SeNPs. These findings collectively underscore the diverse applications of SeNPs synthesized with Vaccinium subg. Oxycoccus extract, ranging from antioxidant activities and membrane stabilization to potential cytotoxic effects, lays the groundwork for their versatile application in biological and medicinal contexts.

References:

[1].   Haleem, A., Javaid, M., Singh, R. P., Rab, S., Suman, R., 2023, Applications of nanotechnology in the medical field: a brief review. Glob Health J.;7: 70–77. doi:10.1016/j.glohj.2023.02.008

[2].   Pasika, S. R., Bulusu, R., Rao, B. V. K., Kommineni, N., Bolla, P. K., Kala, S. G., et al., 2023, Nanotechnology for Biomedical Applications. Nanomaterials. Singapore: Springer Nature Singapore;. 297–327. doi:10.1007/978-981-19-7963-7_11

[3].   Rezić, I., 2022, Nanoparticles for biomedical application and their synthesis. Polymers (Basel).;14 (9) 4, 961. doi:10.3390/polym14224961

[4].   Chen, J., Li, L., Song, K., Wang, Z., 2022, Application of different nanomaterials in biomedical field. Highlights in Science, Engineering and Technology.;14: 57–64. doi:10.54097/hset.v14i.1593

[5].   Tharani, M., Rajeshkumar, S., Al-Ghanim, K. A., Nicoletti, M., Sachivkina, N., Govindarajan M., 2023, Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity. Biomedicines, 11. doi:10.3390/biomedicines11051472

[6].   Xie, B., Zeng, D., Yang, M., Tang, Z., He, L., Chen, T., 2023, 1Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano. 7: 14053–14068. doi:10.1021/acsnano.3c04344

[7].   Devi, M. S., Srinivasan, S., Muthuvel, A., 2023, Selenium nanomaterial is a promising nanotechnology for biomedical and environmental remediation: A detailed review. Biocatal Agric Biotechnol. 51: 102766. doi:10.1016/j.bcab.2023.102766.

[8].   Kurup, M., Kumar, M., Ramanathan, S., Chandra, M., 2023, The biogenetic synthesis of metallic nanoparticles and the role they play in anti-inflammatory drug treatment. Curr Drug Discov Technol. 20. doi:10.2174/1570163820666230718123544

[9].   Li, Y., Zhu, S., Luo, J., Tong, Y., Zheng, Y., Ji, L., et al., 2023, The Protective Effect of Selenium Nanoparticles in Osteoarthritis: In vitro and in vivo Studies. Drug Des Devel Ther. 17: 1515–1529. doi:10.2147/dddt.s407122

[10].  Arafa, F. M., Mogahed, N. M. F. H., Eltarahony, M. M., Diab, R. G., 2023, Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathog Glob Health. 117: 639–654. doi:10.1080/20477724.2023.2186079

[11].  Santhoshkumar, J., Kumar, S. V., Rajeshkumar, S., 2017, Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Effic Technol. 3: 459–465. doi:10.1016/j.reffit.2017.05.001

[12].  Menon, S., Agarwal, H., Rajeshkumar, S., Jacquline Rosy, P., Shanmugam, V. K., 2020, Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience. 10: 122–135. doi:10.1007/s12668-019-00710-3

[13].  Rajeshkumar, S., Tharani, M., Jeevitha, M., Santhoshkumar, J., 2019, Anticariogenic activity of fresh aloe Vera gel mediated copper oxide nanoparticles. Indian J Public Health Res Dev. 10: 3664. doi:10.5958/0976-5506.2019.04158.5

[14].  Zhidkin, R., Zhurbenko, P., Bogomaz, O., Gorodilova, E., Katsapov, I., Antropov, D., et al., 2023, Biodiversity of rolB/C-like natural transgene in the genus Vaccinium L. and its application for phylogenetic studies. Int J Mol Sci. 24. doi:10.3390/ijms24086932

[15].  A. Waikar, B., C. Mandave, P., Berries: A new paradigm for nutraceuticals., 2023, Edible Berries - New Insights. IntechOpen; doi:10.5772/intechopen.1002226

[16].  Martău, G. A., Bernadette-Emőke, T., Odocheanu, R., Soporan, D. A., Bochiș, M., Simon, E., et al. 2023, Vaccinium species (Ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules. 28. doi:10.3390/molecules28041533

[17].  Nurzyńska-Wierdak, R., 2023, Phenolic compounds from new natural sources-plant genotype and ontogenetic variation. Molecules. 28. doi:10.3390/molecules28041731

[18].  Priyaa, N. P., Rajeshkumar, S., Lakshmi, T., Roy, A., 2020, Antibacterial Properties of Lodhra Bark (Symphlocus racemosa) Mediated Silver Nanoparticles Against Oral Pathogens. Plant Cell Biotechnology And Molecular Biology. 1–7.

[19].  Sharma, S. K., Singh, A. P., 2012, In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J Acupunct Meridian Stud. 5: 112–118. doi:10.1016/j.jams.2012.03.002

[20].  Bhatti, M. Z., Ali, A., Ahmad, A., Saeed, A., Malik, S. A., 2015, Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Res Notes.;8: 279. doi:10.1186/s13104-015-1228-3

[21].  Long, Q., Cui, L-K., He, S-B., Sun, J., Chen, Q-Z., Bao, H-D., et al., 2023, Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Sci Rep. 13. doi:10.1038/s41598-022-26396-4

[22].  Vu, T. T., Nguyen, P. T. M., Pham, N. H., Le, T. H., Nguyen, T. H., Do, D. T., et al., 2022, Green synthesis of selenium nanoparticles using Cleistocalyx operculatus leaf extract and their acute oral toxicity study. J Compos Sci. 6: 307. doi:10.3390/jcs6100307