Biodegradable Nanoformulations for Enhanced Recombinant Protein Drug Delivery: A Promising Approach for Controlling Vibrio harveyi in Aquatic Models

Abstract:
Biodegradable nanoformulations have developed as an
innovative method to improve the delivery and effectiveness of recombinant
protein therapeutics in aquaculture. This research examines their efficacy in
managing "Vibrio harveyi," a widespread disease responsible for
considerable economic detriment in the aquaculture sector. Nanoformulations,
made from eco-friendly and biocompatible substances, provide regulated and
targeted medication administration, hence minimizing off-target effects and
decreasing environmental pollution. These technologies improve the stability
and bioavailability of recombinant proteins, addressing issues such as fast
breakdown in aquatic conditions. The use of modern nanotechnology in
aquaculture medicine provides a sustainable and efficient approach to address
bacterial infections, enhance fish health, and guarantee ecological safety.
This study shows the current progress, problems, and possible future paths of
biodegradable nanoformulations for recombinant protein drug delivery,
highlighting how they could completely change sustainable aquaculture
operations.
References:
[1]. Khan, M. A., Shadan Khan,
K.,
2011, Aquaculture
as a food production system: A review. Early Pregnancy. ;3: 291–302.
[2]. Ahmed, N., Azra, M. N., 2022,10.1007/s40572-022-00364-6
[3]. Afewerki, S., Osmundsen,
T., Olsen, M. S., Størkersen, K., Misund, A., Thorvaldsen, T., 2023, Innovation policy in
the Norwegian aquaculture industry: Reshaping aquaculture production innovation
networks. Mar Policy. ;152: 105624. doi:10.1016/j.marpol.2023.105624
[4]. Assefa, A., Abunna, F., 2018,
Maintenance of fish health in aquaculture: Review of epidemiological approaches
for prevention and control of infectious disease of fish. Vet Med Int.
;2018: 5432497. doi:10.1155/2018/5432497
[5]. Ina-Salwany, M. Y.,
Al-Saari, N., Mohamad, A., Mursidi. F. A., Mohd-Aris, A., Amal, M. N. A., et
al. ., 2019, Vibriosis
in fish: A review on disease development and prevention. J Aquat Anim
Health.;31: 3–22. doi:10.1002/aah.10045
[6]. Kah Sem, N. A. D., Abd
Gani, S., Chong, C. M., Natrah, I., Shamsi, S., 2023,
Management and mitigation of vibriosis in aquaculture: Nanoparticles as
promising alternatives. Int J Mol Sci. ;24. doi:10.3390/ijms241612542
[7]. Habboush, Y., Guzman N., 2024.
Antibiotic resistance. StatPearls. Treasure Island (FL): StatPearls
Publishing; Available: https://www.ncbi.nlm.nih.gov/books/NBK513277/
[8]. Mondal, H., Thomas, J., 2022, A
review on the recent advances and application of vaccines against fish
pathogens in aquaculture. Aquac Int. ;30: 1971–2000. doi:10.1007/s10499-022-00884-w
[9]. Kumar, A., Middha, S. K.,
Menon, S. V., Paital, B., Gokarn, S., Nelli, M., et al.., 2024, Current Challenges of
Vaccination in Fish Health Management. Animals.;14: 2692. doi:10.3390/ani14182692
[10]. Bøgwald, J., Dalmo, R. A.,
2019,
Review on immersion vaccines for fish: An update Microorganisms. ;7: 627. doi:10.3390/microorganisms7120627
[11]. Ma, J., Bruce, T. J.,
Jones, E. M., Cain, K. D., 2019, A review of fish vaccine development strategies: Conventional
methods and modern biotechnological approaches. Microorganisms. ;7: 569. doi:10.3390/microorganisms7110569
[12]. Abram QH, Dixon B,
Katzenback BA..,
2017
Impacts of low temperature on the teleost immune system. Biology (Basel). ;6.
doi:10.3390/biology6040039
[13]. Mugwanya, M., Dawood, M.
A. O., Kimera, F., Sewilam, H., 2022, Anthropogenic
temperature fluctuations and their effect on aquaculture: A comprehensive
review. Aquac Fish. ;7: 223–243. doi:10.1016/j.aaf.2021.12.005
[14]. Petrovic, S., Bita, B.,
Barbinta-Patrascu, M. E., 2024, Nanoformulations in
pharmaceutical and biomedical applications: Green perspectives. Int J Mol
Sci.;25: 5842. doi:10.3390/ijms25115842
[15]. Yeh, Y. C., Huang, T. H.,
Yang, S. C., Chen, C. C., Fang, J. Y., 2020, Nano-based drug delivery or targeting to eradicate bacteria for
infection mitigation: A review of recent advances. Front Chem. 8: 286.
doi:10.3389/fchem.2020.00286
[16]. Youssef, F. S., El-Banna,
H. A., Elzorba, H. Y., Galal, A. M., 2019, Application of some
nanoparticles in the field of veterinary medicine. Int J Vet Sci Med. 7:
78–93. doi:10.1080/23144599.2019.1691379
[17]. Cheng, X., Xie, Q., Sun,
Y.,
2023, Advances in
nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. ;11:
1177151. doi:10.3389/fbioe.2023.1177151
[18]. Gupta, V., Sengupta, M.,
Prakash, J., Tripathy, B. C., 2017, Production of Recombinant Pharmaceutical Proteins. Basic and
Applied Aspects of Biotechnology. Singapore: Springer Singapore; . pp.
77–101. doi:10.1007/978-981-10-0875-7_4
[19]. Tripathi, N. K.,
Shrivastava, A., 2019, Recent developments in
bioprocessing of recombinant proteins: Expression hosts and process
development. Front Bioeng Biotechnol.;7: 420. doi:10.3389/fbioe.2019.00420
[20]. Gupta, S. K., Shukla, P., 2017, Sophisticated cloning,
fermentation, and purification technologies for an enhanced therapeutic protein
production: A review. Front Pharmacol. 8: 419. doi:10.3389/fphar.2017.00419
[21]. Lee, P. T., Yamamoto, F.
Y., Low, C. F., Loh, J. Y., Chong, C. M., 2021, Gut immune system and
the implications of oral-administered immunoprophylaxis in finfish aquaculture.
Front Immunol. ;12: 773193. doi:10.3389/fimmu.2021.773193
[22]. Mokhtar, D., Zaccone, G.,
Alesci, A., Kuciel, M., Hussein, M., Sayed, R., 2023, Main components of fish
immunity: An overview of the fish immune system. G. ;8: 93. doi:10.3390/fishes8020093
[23]. Nguyen, H. T., Nguyen, T.
T. T., Chen, Y. C., Vu-Khac, H., Wang, P. C., Chen, S. C., 2018, Enhanced immune
responses and effectiveness of refined outer membrane protein vaccines against
Vibrio harveyi in orange-spotted grouper (Epinephelus coioides). J Fish Dis.
;41: 1349–1358. doi:10.1111/jfd.12828
[24]. Semple, S. L., Dixon, B., 2020, Salmonid antibacterial immunity: An
aquaculture perspective. Biology (Basel). ;9: 331. doi:10.3390/biology9100331
[25]. Mba, I. E., Nweze, E. I., 2022, Antimicrobial peptides
therapy: An emerging alternative for treating drug-resistant bacteria. Yale
J Biol Med.;95: 445–463. Available: https://www.ncbi.nlm.nih.gov/pubmed/36568838
[26]. Imran, M., Jha, S. K., Hasan, N.,
Insaf, A., Shrestha, J., Shrestha, J., et al., 2022, Overcoming multidrug resistance of
antibiotics via nanodelivery systems. Pharmaceutics;14: 586. doi:10.3390/pharmaceutics14030586
[27]. Makabenta, J. M. V.,
Nabawy, A., Li, C. H., Schmidt-Malan, S., Patel, R., Rotello, V. M., 2021, Nanomaterial-based
therapeutics for antibiotic-resistant bacterial infections. Nat Rev
Microbiol. ;19: 23–36. doi:10.1038/s41579-020-0420-1
[28]. Araujo, G. S., Silva, J.
W. A., da, Cotas, J., Pereira, L., 2022, Fish farming techniques:
Current situation and trends. J Mar Sci Eng. ;10: 1598. doi:10.3390/jmse10111598
[29]. Mohd Yazid, S. H., Mohd
Daud, H., Azmai, M. N. A., Mohamad, N., Mohd Nor, N., 2021, Estimating the economic
loss due to vibriosis in net-cage cultured Asian seabass (Lates calcarifer):
Evidence from the east coast of Peninsular Malaysia. Front Vet Sci. ;8:
644009. doi:10.3389/fvets.2021.644009
[30]. Hegde, A., Kabra, S.,
Basawa, R. M., Khile, D. A., Abbu, R. U. F., Thomas, N. A., et al, 2023, Bacterial diseases in
marine fish species: current trends and future prospects in disease management.
World J Microbiol Biotechnol. ;39: 317. doi:10.1007/s11274-023-03755-5
[31]. Gao, W., Chen, Y., Zhang,
Y., Zhang, Q., Zhang, L., 2018, Nanoparticle-based local antimicrobial drug delivery. Adv Drug
Deliv Rev. ;127: 46–57. doi:10.1016/j.addr.2017.09.015
[32]. Fajardo, C.,
Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., De Donato, M., 2022, Nanotechnology
in aquaculture: Applications, perspectives and regulatory challenges. Aquac
Fish. ;7: 185–200. doi:10.1016/j.aaf.2021.12.006
[33]. Yang, F., Cabe, M.,
Nowak, H. A., Langert, K. A., 2022, Chitosan/poly(lactic-co-glycolic) acid nanoparticle formulations
with finely-tuned size distributions for enhanced mucoadhesion. Pharmaceutics.
; 14: 95. doi:10.3390/pharmaceutics14010095