Biodegradable Nanoformulations for Enhanced Recombinant Protein Drug Delivery: A Promising Approach for Controlling Vibrio harveyi in Aquatic Models

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art059

Authors : Vimal S, Vidya Saranya S, Debalina Sen, Deepak Sharma, Arockia Alex

Abstract:

Biodegradable nanoformulations have developed as an innovative method to improve the delivery and effectiveness of recombinant protein therapeutics in aquaculture. This research examines their efficacy in managing "Vibrio harveyi," a widespread disease responsible for considerable economic detriment in the aquaculture sector. Nanoformulations, made from eco-friendly and biocompatible substances, provide regulated and targeted medication administration, hence minimizing off-target effects and decreasing environmental pollution. These technologies improve the stability and bioavailability of recombinant proteins, addressing issues such as fast breakdown in aquatic conditions. The use of modern nanotechnology in aquaculture medicine provides a sustainable and efficient approach to address bacterial infections, enhance fish health, and guarantee ecological safety. This study shows the current progress, problems, and possible future paths of biodegradable nanoformulations for recombinant protein drug delivery, highlighting how they could completely change sustainable aquaculture operations.

References:

[1].   Khan, M. A., Shadan Khan, K., 2011, Aquaculture as a food production system: A review. Early Pregnancy. ;3: 291–302.

[2].   Ahmed, N., Azra, M. N., 2022,10.1007/s40572-022-00364-6

[3].   Afewerki, S., Osmundsen, T., Olsen, M. S., Størkersen, K., Misund, A., Thorvaldsen, T., 2023, Innovation policy in the Norwegian aquaculture industry: Reshaping aquaculture production innovation networks. Mar Policy. ;152: 105624. doi:10.1016/j.marpol.2023.105624

[4].   Assefa, A., Abunna, F., 2018, Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int. ;2018: 5432497. doi:10.1155/2018/5432497

[5].   Ina-Salwany, M. Y., Al-Saari, N., Mohamad, A., Mursidi. F. A., Mohd-Aris, A., Amal, M. N. A., et al. ., 2019, Vibriosis in fish: A review on disease development and prevention. J Aquat Anim Health.;31: 3–22. doi:10.1002/aah.10045

[6].   Kah Sem, N. A. D., Abd Gani, S., Chong, C. M., Natrah, I., Shamsi, S., 2023, Management and mitigation of vibriosis in aquaculture: Nanoparticles as promising alternatives. Int J Mol Sci. ;24. doi:10.3390/ijms241612542

[7].   Habboush, Y., Guzman N., 2024. Antibiotic resistance. StatPearls. Treasure Island (FL): StatPearls Publishing; Available: https://www.ncbi.nlm.nih.gov/books/NBK513277/

[8].   Mondal, H., Thomas, J., 2022, A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquac Int. ;30: 1971–2000. doi:10.1007/s10499-022-00884-w

[9].   Kumar, A., Middha, S. K., Menon, S. V., Paital, B., Gokarn, S., Nelli, M., et al.., 2024, Current Challenges of Vaccination in Fish Health Management. Animals.;14: 2692. doi:10.3390/ani14182692

[10].  Bøgwald, J., Dalmo, R. A., 2019, Review on immersion vaccines for fish: An update Microorganisms. ;7: 627. doi:10.3390/microorganisms7120627

[11].  Ma, J., Bruce, T. J., Jones, E. M., Cain, K. D., 2019, A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms. ;7: 569. doi:10.3390/microorganisms7110569

[12].  Abram QH, Dixon B, Katzenback BA.., 2017 Impacts of low temperature on the teleost immune system. Biology (Basel). ;6. doi:10.3390/biology6040039

[13].  Mugwanya, M., Dawood, M. A. O., Kimera, F., Sewilam, H.,  2022, Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquac Fish. ;7: 223–243. doi:10.1016/j.aaf.2021.12.005

[14].  Petrovic, S., Bita, B., Barbinta-Patrascu, M. E., 2024, Nanoformulations in pharmaceutical and biomedical applications: Green perspectives. Int J Mol Sci.;25: 5842. doi:10.3390/ijms25115842

[15].  Yeh, Y. C., Huang, T. H., Yang, S. C., Chen, C. C., Fang, J. Y., 2020, Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem. 8: 286. doi:10.3389/fchem.2020.00286

[16].  Youssef, F. S., El-Banna, H. A., Elzorba, H. Y., Galal, A. M., 2019, Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med. 7: 78–93. doi:10.1080/23144599.2019.1691379

[17].  Cheng, X., Xie, Q., Sun, Y., 2023, Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. ;11: 1177151. doi:10.3389/fbioe.2023.1177151

[18].  Gupta, V., Sengupta, M., Prakash, J., Tripathy, B. C., 2017, Production of Recombinant Pharmaceutical Proteins. Basic and Applied Aspects of Biotechnology. Singapore: Springer Singapore; . pp. 77–101. doi:10.1007/978-981-10-0875-7_4

[19].  Tripathi, N. K., Shrivastava, A., 2019, Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front Bioeng Biotechnol.;7: 420. doi:10.3389/fbioe.2019.00420

[20].  Gupta, S. K., Shukla, P., 2017, Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A review. Front Pharmacol. 8: 419. doi:10.3389/fphar.2017.00419

[21].  Lee, P. T., Yamamoto, F. Y., Low, C. F., Loh, J. Y., Chong, C. M., 2021, Gut immune system and the implications of oral-administered immunoprophylaxis in finfish aquaculture. Front Immunol. ;12: 773193. doi:10.3389/fimmu.2021.773193

[22].  Mokhtar, D., Zaccone, G., Alesci, A., Kuciel, M., Hussein, M., Sayed, R., 2023, Main components of fish immunity: An overview of the fish immune system. G. ;8: 93. doi:10.3390/fishes8020093

[23].  Nguyen, H. T., Nguyen, T. T. T., Chen, Y. C., Vu-Khac, H., Wang, P. C., Chen, S. C., 2018, Enhanced immune responses and effectiveness of refined outer membrane protein vaccines against Vibrio harveyi in orange-spotted grouper (Epinephelus coioides). J Fish Dis. ;41: 1349–1358. doi:10.1111/jfd.12828

[24].  Semple, S. L., Dixon, B., 2020, Salmonid antibacterial immunity: An aquaculture perspective. Biology (Basel). ;9: 331. doi:10.3390/biology9100331

[25].  Mba, I. E., Nweze, E. I., 2022, Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria. Yale J Biol Med.;95: 445–463. Available: https://www.ncbi.nlm.nih.gov/pubmed/36568838

[26].  Imran, M., Jha, S. K., Hasan, N., Insaf, A., Shrestha, J., Shrestha, J., et al., 2022, Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics;14: 586. doi:10.3390/pharmaceutics14030586

[27].  Makabenta, J. M. V., Nabawy, A., Li, C. H., Schmidt-Malan, S., Patel, R., Rotello, V. M., 2021, Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. ;19: 23–36. doi:10.1038/s41579-020-0420-1

[28].  Araujo, G. S., Silva, J. W. A., da, Cotas, J., Pereira, L., 2022, Fish farming techniques: Current situation and trends. J Mar Sci Eng. ;10: 1598. doi:10.3390/jmse10111598

[29].  Mohd Yazid, S. H., Mohd Daud, H., Azmai, M. N. A., Mohamad, N., Mohd Nor, N., 2021, Estimating the economic loss due to vibriosis in net-cage cultured Asian seabass (Lates calcarifer): Evidence from the east coast of Peninsular Malaysia. Front Vet Sci. ;8: 644009. doi:10.3389/fvets.2021.644009

[30].  Hegde, A., Kabra, S., Basawa, R. M., Khile, D. A., Abbu, R. U. F., Thomas, N. A., et al, 2023, Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol. ;39: 317. doi:10.1007/s11274-023-03755-5

[31].  Gao, W., Chen, Y., Zhang, Y., Zhang, Q., Zhang, L., 2018, Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. ;127: 46–57. doi:10.1016/j.addr.2017.09.015

[32].  Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., De Donato, M., 2022, Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquac Fish. ;7: 185–200. doi:10.1016/j.aaf.2021.12.006

[33].  Yang, F., Cabe, M., Nowak, H. A., Langert, K. A., 2022, Chitosan/poly(lactic-co-glycolic) acid nanoparticle formulations with finely-tuned size distributions for enhanced mucoadhesion. Pharmaceutics. ; 14: 95. doi:10.3390/pharmaceutics14010095