Ecofriendly Synthesis of Cobalt Nanoparticles Using Millettia pinnata and Evaluation of Embryonic Toxicology and Anticancer Activity

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art046

Authors : Mukesh Kumar Dharmalingam Jothinathan, Archana Behera, Iadalin Ryntathiang, Devanand Gulab Chaudhary, Yagavel Pooja, Yuvashree Chandrasekaran

Abstract:

Nanotechnology driven approaches have gained significant attention especially in biomedical research particularly in the green synthesis of metal nanoparticles offering ecofriendly and sustainable alternatives for therapeutic applications. This study explored the green synthesis of cobalt nanoparticles (CoNPs) from Millettia pinnata and evaluated their embryonic toxicology and anticancer activity against osteosarcoma cells. CoNPs were synthesized and characterized using UV-Vis spectrophotometry, FTIR spectroscopy and SEM-EDAX analysis. UV-Vis analysis confirmed CoNPs formation at 320 nm, while FTIR identified O-H, C=C and metal ligand vibrations. SEM showed nanoparticle agglomeration with an average size of 100 nm and EDAX confirmed cobalt and chlorine presence. The antimicrobial activity of CoNPs was assessed through time kill curve analysis against Candida albicans, Klebsiella sp, Enterococcus faecalis and Streptococcus mutans. The results demonstrated strong efficacy against S. mutans, moderate activity against Klebsiella sp. and E. faecalis and low anticandidal activity against C. albicans. Cytotoxicity studies using MTT assays showed a dose dependent reduction in osteosarcoma cell viability, further confirmed by apoptosis detection through AO/EtBr staining. Toxicity assessments including brine shrimp lethality assays (BSLA) and zebrafish embryo tests revealed dose and time dependent effects. These findings suggest that M. pinnata derived CoNPs exhibit strong antimicrobial and cytotoxic properties, especially against S. mutans and osteosarcoma cells, warranting further research into their therapeutic potential and environmental impact.

References:

[1].   Salem, S. S., Badawy, M. S. E., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. 2022, Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893, https://doi.org/10.3390/life12060893

[2].   Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. 2017, A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291, https://doi.org/10.1080/21691401.2016.1241792

[3].   Keshari, A. K., Srivastava, R., Singh, P., Yadav, V. B., & Nath, G. 2020, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 11(1), 37-44, https://doi.org/10.1016/j.jaim.2017.11.003

[4].   Varma, R. S., 2012, Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2), 123-128, https://doi.org/10.1016/j.coche.2011.12.002

[5].   Osorio-Cantillo, C., Santiago-Miranda, A. N., Perales-Perez, O., & Xin, Y. 2012, Size-and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. Journal of Applied Physics, 111(7), 07B324, http://doi.org/10.1063/1.3676620

[6].   Saeed, S. Y., Mazhar, K., Raees, L., Mukhtiar, A., Khan, F., & Khan, M. 2022, Green synthesis of cobalt oxide nanoparticles using roots extract of Ziziphus Oxyphylla Edgew its characterization and antibacterial activity. Materials Research Express, 9(10), 105001, https://doi.org/10.1088/2053-1591/ac9350

[7].   Safdar, A., Mohamed, H. E. A., Hkiri, K., Muhaymin, A., & Maaza, M. 2023, Green synthesis of cobalt oxide nanoparticles using hyphaene thebaica fruit extract and their photocatalytic application. Applied Sciences, 13(16), 9082, https://doi.org/10.3390/app13169082

[8].   Govindasamy, R., Raja, V., Singh, S., Govindarasu, M., Sabura, S., Rekha, K., Rajeswari, V. D., Alharthi, S. S., Vaiyapuri, M., Sudarmani, R., & Jesurani, S. 2022, Green synthesis and characterization of cobalt oxide nanoparticles using Psidium guajava leaves extracts and their photocatalytic and biological activities. Molecules, 27(17), 5646, https://doi.org/10.3390/molecules27175646

[9].   Chelliah, P., Wabaidur, S. M., Sharma, H. P., Jweeg, M. J., Majdi, H. S., AL. Kubaisy, M. M. R., Iqbal, A., & Lai, W. C. 2023, Green synthesis and characterizations of cobalt oxide nanoparticles and their coherent photocatalytic and antibacterial investigations. Water, 15(5), 910, https://doi.org/10.3390/w15050910

[10].  Jena, R., Rath, D., Rout, S. S., & Kar, D. M. 2020, A review on genus Millettia: Traditional uses, phytochemicals and pharmacological activities. Saudi Pharmaceutical Journal, 28(12), 1686-1703, https://doi.org/10.3390/w15050910

[11].  Jeba, D. P., Ramkumar, P., David, A., & Ashli, J., 2022, Synthesis of Green and Pure Copper Oxide Nanoparticles Using Millettia Pinnata Leaf Extract and Their Characterisation. ECS Transactions, 107(1), 17335, https://doi.org/10.1149/10701.17335ecst

[12].  Kumar, G., Ghosh, M., & Pandey, D. M., 2019, Method development for optimised green synthesis of gold nanoparticles from Millettia pinnata and their activity in non‐small cell lung cancer cell lines. IET Nanobiotechnology, 13(6), 626-633, https://doi.org/10.1049/iet-nbt.2018.5410

[13].  Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. 2020, Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arabian Journal of Chemistry, 13(1), 606-619, https://doi.org/10.1016/j.arabjc.2017.07.004

[14].  Ali, H., Yadav, Y. K., Ali, D., Kumar, G., & Alarifi, S. 2023, Biosynthesis and characterization of cobalt nanoparticles using combination of different plants and their antimicrobial activity. Bioscience Reports, 43(7), BSR20230151, https://doi.org/10.1042/BSR20230151

[15].  Jia, H. R., Zhu, Y. X., Duan, Q. Y., Chen, Z., & Wu, F. G., 2019, Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal of Controlled Release, 311, 301-318, https://doi.org/10.1016/j.jconrel.2019.08.022

[16].  Tan, Z., Deng, L., Jiang, Z., Xiang, G., Zhang, G., He, S., Zhang, H., & Wang, Y., 2024, Selenium Nanoparticles Attenuate Cobalt Nanoparticle-Induced Skeletal Muscle Injury: A Study Based on Myoblasts and Zebrafish. Toxics, 12(2), 130, https://doi.org/10.3390/toxics12020130

[17].  Ahmad, F., Liu, X., Zhou, Y., & Yao, H. 2015, An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio). Aquatic Toxicology, 166, 21-28. https://doi.org/10.1016/j.aquatox.2015.07.003

[18].  Ravi, L., Sreenivas, B. A., Kumari, G. S., & Archana, O., 2022, Anticancer cytotoxicity and antifungal abilities of green-synthesized cobalt hydroxide (Co (OH) 2) nanoparticles using Lantana camara L. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 124, https://doi.org/10.1186/s43088-022-00304-1

[19].  Gayathri, M. K. E., Lakshmi Thangavelu, D. R. S., & Perumal, E. 2023, Green synthesis of cumin and clove mediated selenium nanoparticles and its anticancer activity against osteosarcoma cell line. Journal Of Survey in Fisheries Sciences, 10(1S), 300-311, https://doi.org/10.17762/sfs.v10i1S.175

[20].  Ryntathiang, I., Behera, A., Richard, T., & Jothinathan, M. K. D. 2024, An Assessment of the In Vitro Antioxidant Activity of Cobalt Nanoparticles Synthesized from Millettia pinnata, Butea monosperma, and Madhuca indica Extracts: A Comparative Study. Cureus, 16(4), e59112, https://doi.org/10.7759/cureus.59112

[21].  Ryntathiang, I., Jothinathan, M. K. D., Behera, A., Saravanan, S., & Murugan, R., 2024, Comparative bioactivity analysis of green-synthesized metal (cobalt, copper, and selenium) nanoparticles. Cureus, 16(3), e55933, https://doi.org/10.7759/cureus.55933

[22].  Munusamy, T., & Shanmugam, R., 2023, Green synthesis of copper oxide nanoparticles synthesized by Terminalia chebula dried fruit extract: characterization and antibacterial action. Cureus, 15(12), e50142, https://doi.org/10.7759/cureus.50142

[23].  Rajeshkumar, S., Santhoshkumar, J., Vanaja, M., Sivaperumal, P., Ponnanikajamideen, M., Ali, D., & Arunachalam, K. 2022, Evaluation of zebrafish toxicology and biomedical potential of aeromonas hydrophila mediated copper sulfide nanoparticles. Oxidative Medicine and Cellular Longevity, 2022(1), 7969825, https://doi.org/10.1155/2022/7969825

[24].  Sankar, H. N., Shanmugam, R., & Anandan, J. 2024, Green Synthesis of Euphorbia tirucalli-Mediated Titanium Dioxide Nanoparticles Against Wound Pathogens. Cureus, 16(2), e53939, https://doi.org/10.7759/cureus.53939

[25].  Ameena, M., Arumugham, M., Ramalingam, K., Rajeshkumar, S., & Perumal, E. 2023, Cytocompatibility and wound healing activity of chitosan thiocolchicoside lauric acid nanogel in human gingival fibroblast cells. Cureus, 15(8), e43727, https://doi.org/10.7759/cureus.43727

[26].  Raja, F. N., Worthington, T., & Martin, R. A. 2023, The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination. Biomedical Materials, 18(4), 045003, https://doi.org/10.1088/1748-605X/acd03f

[27].  Palaniappan, P., Thamaynthi, S., Maharifa, H. N. S., & Ramesh, R., 2021, Green Synthesis of Copper (Cu) Nanoparticles Using Marine Brown Algae Turbinaria Ornata and Its Brine Shrimp Lethality Bioassay. International Journal of Nanotechnology and Nanomedicine, 6(2), 35-40, https://dx.doi.org/10.33140/IJNN

[28].  Mutalik, C., Nivedita, Sneka, C., Krisnawati, D. I., Yougbaré, S., Hsu, C. C., & Kuo, T. R. 2024, Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. International Journal of Molecular Sciences, 25(3), 1926, https://doi.org/10.3390/ijms25031926

[29].  Kumar, R., Huda, M. N., Habib, A., Nafiujjaman, M., Woo, H. J., Kim, T., & Nurunnabi, M., 2023, Carbon Coated Iron–Cobalt Nanoparticles for Magnetic Particle Imaging. ACS Applied Bio Materials, 6(8), 3257-3265, https://doi.org/10.1021/acsabm.3c00354

[30].  Shashiraj, K. N., Hugar, A., Kumar, R. S., Rudrappa, M., Bhat, M. P., Almansour, A. I., Perumal, K., & Nayaka, S., 2023, Exploring the antimicrobial, anticancer, and apoptosis inducing ability of biofabricated silver nanoparticles using Lagerstroemia speciosa flower buds against the Human Osteosarcoma (MG-63) cell line via flow cytometry. Bioengineering, 10(7), 821, https://doi.org/10.3390/bioengineering10070821

[31].  Berehu, H. M., & Patnaik, S., 2024, Biogenic Zinc Oxide Nanoparticles synthesized from Tinospora Cordifolia induce oxidative stress, mitochondrial damage and apoptosis in Colorectal Cancer. Nanotheranostics, 8(3), 312, https://doi.org/10.7150/ntno.84995

[32].  Varghese, R. M., Kumar, A., & Shanmugam, R., 2024, Cytotoxicity and characterization of zinc oxide and silver nanoparticles synthesized using Ocimum tenuiflorum and Ocimum gratissimum herbal formulation. Cureus, 16(2), e53481, https://doi.org/10.7759/cureus.53481

[33].  Waris, A., Din, M., Ali, A., Afridi, S., Baset, A., Khan, A. U., & Ali, M., 2021. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open Life Sciences, 16(1), 14-30, https://doi.org/10.1515/biol-2021-0003

[34].  Shanmuganathan, R., Sathiyavimal, S., Le, Q. H., Al-Ansari, M. M., Al-Humaid, L. A., Jhanani, G. K., Lee, J., & Barathi, S., 2023, Green synthesized cobalt oxide nanoparticles using Curcuma longa for anti-oxidant, antimicrobial, dye degradation and anti-cancer property. Environmental Research, 236, 116747, https://doi.org/10.1016/j.envres.2023.116747

[35].  Singh, D., Sharma, P., Pant, S., Dave, V., Sharma, R., Yadav, R., Prakash, A., & Kuila, A. 2024, Ecofriendly fabrication of cobalt nanoparticles using Azadirachta indica (neem) for effective inhibition of Candida-like fungal infection in medicated nano-coated textile. Environmental Science and Pollution Research, 31(34), 46575-46590, http://dx.doi.org/10.1007/s11356-023-28061-3

[36].  Imtiyaz, A., Singh, A., & Gaur, R., 2024, Comparative Analysis and Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A Systematic Review. BioNanoScience, 14, 1-19, http://dx.doi.org/10.1007/s12668-024-01452-7

[37].  Anupong, W., On-Uma, R., Jutamas, K., Joshi, D., Salmen, S. H., Alahmadi, T. A., & Jhanani, G.K. 2023, Cobalt nanoparticles synthesizing potential of orange peel aqueous extract and their antimicrobial and antioxidant activity. Environmental Research, 216, 114594.https://doi.org/10.1016/j.envres.2022.114594

[38].  Bhutekar, P. G., Kshirsagar, A. K., Bankar, S. S., & Mirgane, S. R. 2023, Green Synthesis and Characterization of Iron and Cobalt Oxide Nanoparticles Using Phaseolus Lunatus Flower Extract. Journal for ReAttach Therapy and Developmental Diversities, 6(9s), 1951-1956, https://doi.org/10.53555/jrtdd.v6i9s.2813

[39].  Sharifi, E., Reisi, F., Yousefiasl, S., Elahian, F., Barjui, S. P., Sartorius, R., Fattahi, N., Zare, E. N., Rabiee, N., Gazi, E. P., & Paiva-Santos, A. C., 2023, Chitosan decorated cobalt zinc ferrite nanoferrofluid composites for potential cancer hyperthermia therapy: anti-cancer activity, genotoxicity, and immunotoxicity evaluation. Advanced Composites and Hybrid Materials, 6(6), 191, http://dx.doi.org/10.1007/s42114-023-00768-4

[40].  Anbarasu, M., Martin, T. M., Priya, P., Sivamurugan, V., Kumar, M. S. K., Shaik, M. R., Kari, Z.A., & Guru, A. 2024, Assessing the impact of Ag-ZnO nanoparticle on the induction of oxidative stress, hematological, and molecular changes in zebrafish (Danio rerio) and McCoy fibroblast cell lines. Aquaculture International, 32(4), 5373-5392, http://dx.doi.org/10.1007/s10499-024-01611-3

[41].  Kannan, V. D., Jaisankar, A., Rajendran, V., Ahmed, M. Z., Alqahtani, A. S., Kazmi, S., Madav, E., Sampath, S., & Asaithambi, P. 2024, Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line. Materials Technology, 39(1), 2286818, https://doi.org/10.1080/10667857.2023.2286818