Ecofriendly Synthesis of Cobalt Nanoparticles Using Millettia pinnata and Evaluation of Embryonic Toxicology and Anticancer Activity

Abstract:
Nanotechnology driven approaches have gained
significant attention especially in biomedical research particularly in the
green synthesis of metal nanoparticles offering ecofriendly and sustainable
alternatives for therapeutic applications. This study explored the green
synthesis of cobalt nanoparticles (CoNPs) from Millettia pinnata and evaluated
their embryonic toxicology and anticancer activity against osteosarcoma cells. CoNPs
were synthesized and characterized using UV-Vis spectrophotometry, FTIR spectroscopy and SEM-EDAX analysis. UV-Vis analysis
confirmed CoNPs formation at 320 nm, while FTIR identified O-H, C=C and metal ligand
vibrations. SEM showed nanoparticle agglomeration with an average size of 100
nm and EDAX confirmed cobalt and chlorine presence. The antimicrobial activity of
CoNPs was assessed through time kill curve analysis against Candida albicans,
Klebsiella sp, Enterococcus faecalis and Streptococcus mutans. The results
demonstrated strong efficacy against S. mutans, moderate activity against Klebsiella sp. and E. faecalis and
low anticandidal activity against C. albicans. Cytotoxicity studies using MTT assays showed a dose dependent reduction
in osteosarcoma cell viability, further confirmed by apoptosis detection
through AO/EtBr staining. Toxicity assessments
including brine shrimp lethality assays (BSLA) and zebrafish embryo tests revealed
dose and time dependent effects. These
findings suggest that M. pinnata derived CoNPs exhibit strong antimicrobial and
cytotoxic properties, especially against S. mutans and osteosarcoma
cells, warranting further research into their therapeutic potential and
environmental impact.
References:
[1].
Salem, S. S., Badawy, M. S. E., Al-Askar, A. A.,
Arishi, A. A., Elkady, F. M., & Hashem, A. H. 2022, Green biosynthesis of
selenium nanoparticles using orange peel waste: Characterization, antibacterial
and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6),
893, https://doi.org/10.3390/life12060893
[2]. Rafique,
M., Sadaf, I., Rafique, M. S., & Tahir, M. B. 2017, A review on green
synthesis of silver nanoparticles and their applications. Artificial
cells, nanomedicine, and biotechnology, 45(7), 1272-1291, https://doi.org/10.1080/21691401.2016.1241792
[3]. Keshari,
A. K., Srivastava, R., Singh, P., Yadav, V. B., & Nath, G. 2020,
Antioxidant and antibacterial activity of silver nanoparticles synthesized by
Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 11(1),
37-44, https://doi.org/10.1016/j.jaim.2017.11.003
[4]. Varma, R.
S., 2012, Greener approach to nanomaterials and their sustainable
applications. Current Opinion in Chemical Engineering, 1(2), 123-128,
https://doi.org/10.1016/j.coche.2011.12.002
[5]. Osorio-Cantillo,
C., Santiago-Miranda, A. N., Perales-Perez, O., & Xin, Y. 2012, Size-and
phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. Journal
of Applied Physics, 111(7), 07B324, http://doi.org/10.1063/1.3676620
[6].
Saeed, S. Y., Mazhar, K., Raees, L.,
Mukhtiar, A., Khan, F., & Khan, M. 2022, Green synthesis of cobalt oxide
nanoparticles using roots extract of Ziziphus Oxyphylla Edgew its
characterization and antibacterial activity. Materials Research Express, 9(10),
105001, https://doi.org/10.1088/2053-1591/ac9350
[7].
Safdar, A., Mohamed, H. E. A.,
Hkiri, K., Muhaymin, A., & Maaza, M. 2023, Green synthesis of cobalt oxide
nanoparticles using hyphaene thebaica fruit extract and their photocatalytic
application. Applied Sciences, 13(16), 9082, https://doi.org/10.3390/app13169082
[8]. Govindasamy, R., Raja, V., Singh, S., Govindarasu, M., Sabura, S.,
Rekha, K., Rajeswari, V. D., Alharthi, S. S., Vaiyapuri, M., Sudarmani, R.,
& Jesurani, S. 2022, Green synthesis and characterization of cobalt oxide
nanoparticles using Psidium guajava leaves extracts and their photocatalytic
and biological activities. Molecules, 27(17), 5646, https://doi.org/10.3390/molecules27175646
[9]. Chelliah,
P., Wabaidur, S. M., Sharma, H. P., Jweeg, M. J., Majdi, H. S., AL. Kubaisy, M.
M. R., Iqbal, A., & Lai, W. C. 2023, Green synthesis and characterizations
of cobalt oxide nanoparticles and their coherent photocatalytic and
antibacterial investigations. Water, 15(5), 910, https://doi.org/10.3390/w15050910
[10]. Jena, R.,
Rath, D., Rout, S. S., & Kar, D. M. 2020, A review on genus Millettia:
Traditional uses, phytochemicals and pharmacological activities. Saudi
Pharmaceutical Journal, 28(12), 1686-1703, https://doi.org/10.3390/w15050910
[11]. Jeba, D. P.,
Ramkumar, P., David, A., & Ashli, J., 2022, Synthesis of Green and Pure
Copper Oxide Nanoparticles Using Millettia Pinnata Leaf Extract and Their Characterisation. ECS
Transactions, 107(1), 17335, https://doi.org/10.1149/10701.17335ecst
[12]. Kumar,
G., Ghosh, M., & Pandey, D. M., 2019, Method development for optimised
green synthesis of gold nanoparticles from Millettia pinnata and their activity
in non‐small cell lung cancer cell lines. IET Nanobiotechnology, 13(6),
626-633, https://doi.org/10.1049/iet-nbt.2018.5410
[13]. Khalil,
A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. 2020,
Physical properties, biological applications and biocompatibility studies on
biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia
thea (Osbeck.). Arabian Journal of Chemistry, 13(1), 606-619, https://doi.org/10.1016/j.arabjc.2017.07.004
[14]. Ali, H., Yadav, Y. K., Ali, D., Kumar, G., & Alarifi, S. 2023,
Biosynthesis and characterization of cobalt nanoparticles using combination of
different plants and their antimicrobial activity. Bioscience Reports, 43(7),
BSR20230151, https://doi.org/10.1042/BSR20230151
[15]. Jia, H. R.,
Zhu, Y. X., Duan, Q. Y., Chen, Z., & Wu, F. G., 2019, Nanomaterials meet
zebrafish: Toxicity evaluation and drug delivery applications. Journal
of Controlled Release, 311, 301-318, https://doi.org/10.1016/j.jconrel.2019.08.022
[16]. Tan, Z.,
Deng, L., Jiang, Z., Xiang, G., Zhang, G., He, S., Zhang, H., & Wang, Y.,
2024, Selenium Nanoparticles Attenuate Cobalt Nanoparticle-Induced Skeletal
Muscle Injury: A Study Based on Myoblasts and Zebrafish. Toxics, 12(2),
130, https://doi.org/10.3390/toxics12020130
[17]. Ahmad,
F., Liu, X., Zhou, Y., & Yao, H. 2015, An in vivo evaluation of acute
toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish
(Danio rerio). Aquatic Toxicology, 166, 21-28. https://doi.org/10.1016/j.aquatox.2015.07.003
[18]. Ravi, L.,
Sreenivas, B. A., Kumari, G. S., & Archana, O., 2022, Anticancer
cytotoxicity and antifungal abilities of green-synthesized cobalt hydroxide (Co
(OH) 2) nanoparticles using Lantana camara L. Beni-Suef University
Journal of Basic and Applied Sciences, 11(1), 124, https://doi.org/10.1186/s43088-022-00304-1
[19]. Gayathri,
M. K. E., Lakshmi Thangavelu, D. R. S., & Perumal, E. 2023, Green synthesis
of cumin and clove mediated selenium nanoparticles and its anticancer activity
against osteosarcoma cell line. Journal Of Survey in Fisheries Sciences, 10(1S),
300-311, https://doi.org/10.17762/sfs.v10i1S.175
[20]. Ryntathiang, I., Behera, A., Richard, T., & Jothinathan, M. K. D.
2024, An Assessment of the In Vitro Antioxidant Activity of Cobalt
Nanoparticles Synthesized from Millettia pinnata, Butea monosperma, and Madhuca
indica Extracts: A Comparative Study. Cureus, 16(4), e59112, https://doi.org/10.7759/cureus.59112
[21]. Ryntathiang, I., Jothinathan, M. K. D., Behera, A., Saravanan, S., &
Murugan, R., 2024, Comparative bioactivity analysis of green-synthesized metal
(cobalt, copper, and selenium) nanoparticles. Cureus, 16(3), e55933, https://doi.org/10.7759/cureus.55933
[22]. Munusamy, T., & Shanmugam, R., 2023, Green synthesis of copper oxide
nanoparticles synthesized by Terminalia chebula dried fruit extract:
characterization and antibacterial action. Cureus, 15(12), e50142,
https://doi.org/10.7759/cureus.50142
[23]. Rajeshkumar, S., Santhoshkumar, J., Vanaja, M., Sivaperumal, P.,
Ponnanikajamideen, M., Ali, D., & Arunachalam, K. 2022, Evaluation of
zebrafish toxicology and biomedical potential of aeromonas hydrophila mediated
copper sulfide nanoparticles. Oxidative Medicine and Cellular Longevity, 2022(1),
7969825, https://doi.org/10.1155/2022/7969825
[24]. Sankar, H. N., Shanmugam, R., & Anandan, J. 2024, Green Synthesis of
Euphorbia tirucalli-Mediated Titanium Dioxide Nanoparticles Against Wound
Pathogens. Cureus, 16(2), e53939, https://doi.org/10.7759/cureus.53939
[25].
Ameena, M., Arumugham, M.,
Ramalingam, K., Rajeshkumar, S., & Perumal, E. 2023, Cytocompatibility and
wound healing activity of chitosan thiocolchicoside lauric acid nanogel in
human gingival fibroblast cells. Cureus, 15(8), e43727,
https://doi.org/10.7759/cureus.43727
[26]. Raja, F. N., Worthington, T., & Martin, R. A. 2023, The
antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone
and in combination. Biomedical Materials, 18(4), 045003, https://doi.org/10.1088/1748-605X/acd03f
[27]. Palaniappan, P., Thamaynthi, S., Maharifa, H. N. S., & Ramesh, R.,
2021, Green Synthesis of Copper (Cu) Nanoparticles Using Marine Brown Algae
Turbinaria Ornata and Its Brine Shrimp Lethality Bioassay. International
Journal of Nanotechnology and Nanomedicine, 6(2), 35-40, https://dx.doi.org/10.33140/IJNN
[28]. Mutalik, C., Nivedita, Sneka, C., Krisnawati, D. I., Yougbaré, S., Hsu,
C. C., & Kuo, T. R. 2024, Zebrafish Insights into Nanomaterial Toxicity: A
Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal
Nanoparticles. International Journal of Molecular Sciences, 25(3),
1926, https://doi.org/10.3390/ijms25031926
[29]. Kumar, R., Huda, M. N., Habib, A., Nafiujjaman, M., Woo, H. J., Kim, T.,
& Nurunnabi, M., 2023, Carbon Coated Iron–Cobalt Nanoparticles for Magnetic
Particle Imaging. ACS Applied Bio Materials, 6(8), 3257-3265, https://doi.org/10.1021/acsabm.3c00354
[30]. Shashiraj, K. N., Hugar, A., Kumar, R. S., Rudrappa, M., Bhat, M. P.,
Almansour, A. I., Perumal, K., & Nayaka, S., 2023, Exploring the
antimicrobial, anticancer, and apoptosis inducing ability of biofabricated
silver nanoparticles using Lagerstroemia speciosa flower buds against the Human
Osteosarcoma (MG-63) cell line via flow cytometry. Bioengineering, 10(7),
821, https://doi.org/10.3390/bioengineering10070821
[31]. Berehu, H. M., & Patnaik, S., 2024, Biogenic Zinc Oxide
Nanoparticles synthesized from Tinospora Cordifolia induce oxidative stress,
mitochondrial damage and apoptosis in Colorectal Cancer. Nanotheranostics, 8(3),
312, https://doi.org/10.7150/ntno.84995
[32]. Varghese, R. M., Kumar, A., & Shanmugam, R., 2024, Cytotoxicity and
characterization of zinc oxide and silver nanoparticles synthesized using
Ocimum tenuiflorum and Ocimum gratissimum herbal formulation. Cureus, 16(2),
e53481, https://doi.org/10.7759/cureus.53481
[33]. Waris, A., Din, M., Ali, A., Afridi, S., Baset,
A., Khan, A. U., & Ali, M., 2021. Green fabrication of Co and Co3O4
nanoparticles and their biomedical applications: A review. Open Life
Sciences, 16(1), 14-30, https://doi.org/10.1515/biol-2021-0003
[34]. Shanmuganathan, R., Sathiyavimal, S., Le, Q. H., Al-Ansari, M. M.,
Al-Humaid, L. A., Jhanani, G. K., Lee, J., & Barathi, S., 2023, Green
synthesized cobalt oxide nanoparticles using Curcuma longa for anti-oxidant,
antimicrobial, dye degradation and anti-cancer property. Environmental
Research, 236, 116747, https://doi.org/10.1016/j.envres.2023.116747
[35]. Singh, D., Sharma, P., Pant, S., Dave, V., Sharma, R., Yadav, R.,
Prakash, A., & Kuila, A. 2024, Ecofriendly fabrication of cobalt
nanoparticles using Azadirachta indica (neem) for effective inhibition of
Candida-like fungal infection in medicated nano-coated textile. Environmental
Science and Pollution Research, 31(34), 46575-46590, http://dx.doi.org/10.1007/s11356-023-28061-3
[36]. Imtiyaz, A., Singh, A., & Gaur, R., 2024, Comparative Analysis and
Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A
Systematic Review. BioNanoScience, 14, 1-19, http://dx.doi.org/10.1007/s12668-024-01452-7
[37]. Anupong, W., On-Uma, R., Jutamas, K., Joshi, D., Salmen, S. H.,
Alahmadi, T. A., & Jhanani, G.K. 2023, Cobalt nanoparticles synthesizing
potential of orange peel aqueous extract and their antimicrobial and
antioxidant activity. Environmental Research, 216, 114594.https://doi.org/10.1016/j.envres.2022.114594
[38]. Bhutekar, P. G., Kshirsagar, A. K., Bankar, S. S., & Mirgane, S. R.
2023, Green Synthesis and Characterization of Iron and Cobalt Oxide
Nanoparticles Using Phaseolus Lunatus Flower Extract. Journal for
ReAttach Therapy and Developmental Diversities, 6(9s), 1951-1956, https://doi.org/10.53555/jrtdd.v6i9s.2813
[39]. Sharifi, E., Reisi, F., Yousefiasl, S., Elahian, F., Barjui, S. P.,
Sartorius, R., Fattahi, N., Zare, E. N., Rabiee, N., Gazi, E. P., & Paiva-Santos,
A. C., 2023, Chitosan decorated cobalt zinc ferrite nanoferrofluid composites
for potential cancer hyperthermia therapy: anti-cancer activity, genotoxicity,
and immunotoxicity evaluation. Advanced Composites and Hybrid Materials, 6(6),
191, http://dx.doi.org/10.1007/s42114-023-00768-4
[40]. Anbarasu, M., Martin, T. M., Priya, P., Sivamurugan, V., Kumar, M. S. K.,
Shaik, M. R., Kari, Z.A., & Guru, A. 2024, Assessing the impact of Ag-ZnO
nanoparticle on the induction of oxidative stress, hematological, and molecular
changes in zebrafish (Danio rerio) and McCoy fibroblast cell lines. Aquaculture
International, 32(4), 5373-5392, http://dx.doi.org/10.1007/s10499-024-01611-3
[41]. Kannan,
V. D., Jaisankar, A., Rajendran, V., Ahmed, M. Z., Alqahtani, A. S., Kazmi, S.,
Madav, E., Sampath, S., & Asaithambi, P. 2024, Ecofriendly bio-synthesis
and spectral characterization of copper nanoparticles using fruit extract of
Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and
anticancer activities on human lung cancer A549 cell line. Materials
Technology, 39(1), 2286818, https://doi.org/10.1080/10667857.2023.2286818