Atopic Allergy Type 1 and Association with Chlamydia Pneumonia in Allergic Patients in Mosul City/Iraq

Abstract:
The present study aimed to investigate the role of age, gender, and family history in the incidence of atopic allergy and its relationship with Chlamydia pneumoniae infection by measuring immunoglobulin E (IgE) levels in humans. Blood samples were collected from 100 individuals (aged 6-60 years, both genders), with 50 patients diagnosed with atopic allergy and 50 healthy individuals considered as the control group. IgE levels were measured in all study participants across different ages and genders by Enzyme-linked Immunosorbent Assay (ELISA). Additionally, the diagnosis of Chlamydia pneumoniae infection was determined by ELISA via measuring IgM levels in all participants. The results were statistically analysed to compare allergic patients with the control group. The findings showed that IgE, in blood samples was notably greater in patients than in individuals without health issues The age range of 18 to 30 years exhibited a high level of IgE among people with allergies. Males have slightly higher IgE levels than females and this difference was noticeable when compared to the control group. Those with a family background of allergies displayed significantly elevated IgE levels suggesting a genetic inclination, towards higher levels of IgE 85 per cent of people, with allergies tested positive for IgM levels indicating Chlamydia pneumonia infection compared to 15 per cent in those, without the infection. The research findings indicated a link, between allergies and Chlamydia pneumonia infection. Mentioned that atopic allergies are influenced by age differences as well, as gender and family medical background.
References:
[1]. May, C. D., 1985, The ancestry of allergy:
being an account of the original experimental induction of hypersensitivity
recognizing the contribution of Paul Portier. Journal of Allergy and
Clinical Immunology, 75(4), 485-495, doi:10.1016/S0091-6749(85)80022-1.
[2]. Uter, W., Werfel, T., Lepoittevin, J. P.,
White, I. R., 2020, Contact allergy—emerging allergens and public health
impact. International Journal of Environmental Research and Public Health,
17(7), 2-40, doi:10.3390/ijerph17072404.
[3]. Vitte, J., Vibhushan, S., Bratti, M.,
Montero-Hernandez, J. E., Blank, U., 2022, Allergy, anaphylaxis, and
nonallergic hypersensitivity: IgE, mast cells, and beyond. Medical
Principles and Practice, 31(6), 501-515, doi:10.1159/000527481.
[4]. Ogulur, I., Pat, Y., Ardicli, O., Barletta,
E., Cevhertas, L., Fernandez‐Santamaria, R., Akdis, C. A., 2021, Advances and
highlights in biomarkers of allergic diseases. Allergy, 76(12),
3659-3686, doi:10.1111/all.15089.
[5]. Johnson, M. J., Currow, D. C., Booth, S.,
2014, Prevalence and assessment of breathlessness in the clinical setting. Expert
review of respiratory medicine, 8(2), 151-161,
doi:10.1586/17476348.2014.879530.
[6]. Ahmad, H. I., Jabbar, A., Mushtaq, N.,
Javed, Z., Hayyat, M. U., Bashir, J., Chen, J., 2022, Immune tolerance vs.
immune resistance: the interaction between host and pathogens in infectious
diseases. Frontiers in Veterinary Science, 9, 827407,
doi:10.3389/fvets.2022.827407.
[7]. Pokludová, L., 2020, Prevention Is Better
Than Cure. Antimicrobials in Livestock 1: Regulation, Science, Practice: A
European Perspective, 125-165, doi:10.1007/978-3-030-46721-0_6.
[8]. Tenero, L., Vaia, R., Ferrante, G., Maule,
M., Venditto, L., Piacentini, G., Caminati, M., 2023, Diagnosis and management
of allergic rhinitis in asthmatic children. Journal of Asthma and Allergy,
45-57, doi:10.2147/JAA.S281439.
[9]. Krempski, J. W., Dant, C., Nadeau, K. C.,
2020, The origins of allergy from a systems approach. Annals of Allergy, Asthma
& Immunology, 125(5), 507-516, doi: 10.1016/j.anai.2020.07.013.
[10]. Ogulur, I., Pat, Y., Ardicli, O., Barletta,
E., Cevhertas, L., Fernandez‐Santamaria, R., Akdis, C. A., 2021, Advances and
highlights in biomarkers of allergic diseases. Allergy, 76(12),
3659-3686, doi:10.1111/all.15089.
[11]. Duțu, L. E., Popescu, M. L., Purdel, C. N.,
Ilie, E. I., Luță, E. A., Costea, L., Gîrd, C. E., 2022, Traditional medicinal
plants—a possible source of antibacterial activity on respiratory diseases
induced by chlamydia pneumoniae, haemophilus influenzae, klebsiella pneumoniae
and moraxella catarrhalis. Diversity, 14(2), 1-34,
doi:10.3390/d14020145.
[12]. Darville, T., 2025, Chlamydia infections.
In Remington and Klein's Infectious Diseases of the Fetus and Newborn Infant,
495-500, Elsevier, doi:10.1016/B978-0-323-79525-8.00029-9.
[13]. Zaręba-Marchewka, K., Szymańska-Czerwińska,
M., Niemczuk, K., 2020, Chlamydiae–what’s new? Journal of Veterinary
Research, 64(4), 461-467, doi:10.2478/jvetres-2020-0077.
[14]. Hahn, D. L., 2021, Chlamydia pneumoniae and
chronic asthma: updated systematic review and meta-analysis of population
attributable risk. PLoS One, 16(4), 1-21, doi:
10.1371/journal.pone.0250034.
[15]. Gusain, S., Bhattacharjee, S., Mishra, A.,
Nandy, A., Singh, A., 2024, Common Infectious Diseases and Clinical
Microbiology of Adolescence. In Lifestyle Diseases in Adolescents: Diseases,
Disorders, and Preventive Measures 146-178, Bentham Science Publishers, doi:10.2174/97898152744311240101.
[16]. Soiza, R. L., Scicluna, C., Bilal, S.,
2023, Virus infections in older people. In Biochemistry and Cell Biology of
Ageing: Part IV, Clinical Science, 149-183, Cham: Springer International
Publishing, doi:10.1007/978-3-031-26576-1_8.
[17]. Huang, Y., Zheng, W., Gan, W., Zhang, T.,
2023, Chlamydia psittaci pneumonia: a clinical analysis of 12 patients. Annals
of Translational Medicine, 11(3), doi:10.21037/atm-22-6624.
[18]. Su, S., Su, X., Zhou, L., Lin, P., Chen,
J., Chen, C., Li, Y., 2021, Severe Chlamydia psittaci pneumonia: clinical
characteristics and risk factors. Annals of Palliative Medicine, 10(7),
1-10, doi:10.21037/apm-21-1502.
[19]. Guo, M. Y., Chen, H. K., Ying, H. Z., Qiu,
F. S., Wu, J. Q., 2021, The role of respiratory flora in the pathogenesis of
chronic respiratory diseases. BioMed Research International, 2021(1),
1-10, doi:10.1155/2021/6431862.
[20]. Andrup, L., Krogfelt, K. A., Stephansen,
L., Hansen, K. S., Graversen, B. K., Wolkoff, P., Madsen, A. M., 2024,
Reduction of acute respiratory infections in day-care by non-pharmaceutical
interventions: a narrative review. Frontiers in Public Health, 12, 1-18,
doi:10.3389/fpubh.2024.1332078.
[21]. Cheok, Y. Y., Lee, C. Y. Q., Cheong, H. C.,
Looi, C. Y., Wong, W. F., 2020, Chronic inflammatory diseases at secondary
sites ensuing urogenital or pulmonary Chlamydia infections. Microorganisms,
8(1), 1-16, doi:10.3390/microorganisms8010127.
[22]. Horvat, J. C., Starkey, M. R., Kim, R. Y.,
Beagley, K. W., Preston, J. A., Gibson, P. G., Hansbro, P. M., 2010, Chlamydial
respiratory infection during allergen sensitization drives neutrophilic
allergic airways disease. The Journal of Immunology, 184(8), 4159-4169,
doi:10.4049/jimmunol.0902287.
[23]. Leigh, L. Y., Vannelli, P., Crow, H. C.,
Desai, S., Lepore, M., Anolik, R., Glick, M., 2021, Diseases of the respiratory
tract. Burket's Oral Medicine, 469-504, doi:10.1002/9781119597797.ch13.
[24]. Galvão, I., Kim, R. Y., Shen, S., Budden,
K. F., Vieira, A. T., Hansbro, P. M., 2020, Emerging therapeutic targets and
preclinical models for severe asthma. Expert Opinion on Therapeutic Targets,
24(9), 845-857, doi:10.1080/14728222.2020.1786535.
[25]. Zemskov, V. M., Zemskov, A. M., Neymann, V.
V., Barsukov, A. A., Zemskova, V. A., Kozlova, M. N., Demidova, V. S., 2022,
Diseases of the Immune System. Biology Bulletin Reviews, 12(4), 414-421,
doi:10.1134/S2079086422040107.
[26]. Tramper‐Stranders, G., Ambrożej, D.,
Arcolaci, A., Atanaskovic‐Markovic, M., Boccabella, C., Bonini, M., 2021,
Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy,
76(11), 3276-3291, doi:10.1111/all.15046.
[27]. Tomás, A. L., Cardoso, F., de Sousa, B.,
Matos, O., 2020, Detection of anti-Pneumocystis jirovecii antibodies in human
serum using a recombinant synthetic multi-epitope kexin-based antigen. European
Journal of Clinical Microbiology & Infectious Diseases, 39(11),
2205-2209, doi:10.1007/s10096-020-03936-2.
[28]. Nierhaus, A., Berlot, G., Kindgen-Milles,
D., Müller, E., Girardis, M., 2020, Best-practice IgM-and IgA-enriched
immunoglobulin use in patients with sepsis. Annals of Intensive Care,
10, 1-19, doi:10.1186/s13613-020-00740-1.
[29]. Li, Y., Yang, H. S., Klasse, P. J., Zhao,
Z., 2024, The significance of antigen-antibody-binding avidity in clinical
diagnosis. Critical Reviews in Clinical Laboratory Sciences, 1-15,
doi:10.1080/10408363.2024.2379286.
[30]. Bhatti, G. K., Khurana, A., Garabadu, D.,
Gupta, P., Jawalekar, S. S., Bhatti, J. S., Navik, U., 2021, Various Cellular
and Molecular Axis Involved in the Pathogenesis of Asthma. Targeting
Cellular Signalling Pathways in Lung Diseases, 53-95,
doi:10.1007/978-981-33-6827-9_3.
[31]. Shamji, M. H., Valenta, R., Jardetzky, T.,
Verhasselt, V., Durham, S. R., Würtzen, P. A., van Neerven, R. J., 2021, The
role of allergen‐specific IgE, IgG and IgA in allergic disease. Allergy,
76(12), 3627-3641, doi:10.1111/all.14908.
[32]. Yount, K. S., Darville, T., 2024, Immunity
to Sexually Transmitted Bacterial Infections of the Female Genital Tract:
Toward Effective Vaccines. Vaccines, 12(8), 1-26,
doi:10.3390/vaccines12080863.
[33]. Dockterman, J., Coers, J., 2021,
Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathogens
and Disease, 79(4), 1-14, doi:10.1093/femspd/ftab012.
[34]. Calmes, D., Huynen, P., Paulus, V., Henket,
M., Guissard, F., Moermans, C., Schleich, F., 2021, Chronic infection with
Chlamydia pneumoniae in asthma: a type-2 low infection related phenotype. Respiratory
research, 22(1), 1-11, doi:10.1186/s12931-021-01635-w.
[35]. Flores-Torres, A. S., Samarasinghe, A. E.,
2022, Impact of therapeutics on unified immunity during allergic asthma and
respiratory infections. Frontiers in Allergy, 3(1), 1-4,
doi:10.3389/falgy.2022.852067.
[36]. Galvão, I., Kim, R. Y., Shen, S., Budden,
K. F., Vieira, A. T., Hansbro, P. M., 2020, Emerging therapeutic targets and
preclinical models for severe asthma. Expert Opinion on Therapeutic Targets,
24(9), 845-857, doi:10.1080/14728222.2020.1786535.
[37]. Smith-Norowitz, T. A., Loeffler, J., Huang,
Y., Klein, E., Norowitz, Y. M., Hammerschlag, M. R., Kohlhoff, S., 2020,
Chlamydia pneumoniae immunoglobulin E antibody levels in patients with asthma
compared with non-asthma. Heliyon, 6(2),1-4, doi:
10.1016/j.heliyon.2020.e03512.
[38]. Krempski, J. W., Dant, C., Nadeau, K. C.,
2020, The origins of allergy from a systems approach. Annals of Allergy, Asthma
& Immunology, 125(5), 507-516, doi:10.1016/j.anai.2020.07.013.
[39]. Sicherer, S. H., Abrams, E. M.,
Nowak-Wegrzyn, A., Hourihane, J. O. B., 2022, Managing food allergy when the
patient is not highly allergic. The Journal of Allergy and Clinical
Immunology: In Practice, 10(1), 46-55, doi:10.1016/j.jaip.2021.05.021.
[40]. Melén, E., Koppelman, G. H.,
Vicedo-Cabrera, A. M., Andersen, Z. J., Bunyavanich, S., 2022, Allergies to
food and airborne allergens in children and adolescents: role of epigenetics in
a changing environment. The Lancet Child and Adolescent Health, 6(11),
810-819, doi:10.1016/S2352-4642(22)00215-2.
[41]. El Ansari, Y. S., Kanagaratham, C.,
Oettgen, H. C., 2020, Focus: Allergic Diseases and Type II Immunity: Mast Cells
as Regulators of Adaptive Immune Responses in Food Allergy. The Yale Journal
of Biology and Medicine, 93(5), 711-718, https://pmc.ncbi.nlm.nih.gov/articles/PMC7757069/
[42]. Santano, R., Rubio, R., Grau-Pujol, B.,
Escola, V., Muchisse, O., Cuamba, I., Dobaño, C., 2021, Plasmodium falciparum
and helminth coinfections increase IgE and parasite-specific IgG responses. Microbiology
Spectrum, 9(3), 1-18, doi: 10.1128/Spectrum.01109-21.
[43]. Akdis, C. A., 2021, Does the epithelial
barrier hypothesis explain the increase in allergy, autoimmunity and other
chronic conditions? Nature Reviews Immunology, 21(11), 739-751,
doi:10.1038/s41577-021-00538-7.
[44]. Akpinar, M. B., 2023, A Hidden Organism,
Chlamydia in the Age of Atherosclerosis. In Chlamydia-Secret Enemy from Past to
Present. IntechOpen, 1(1), 1-15, doi:10.5772/intechopen.109745.
[45]. Shetty, S., Kouskouti, C., Schoen, U.,
Evangelatos, N., Vishwanath, S., Satyamoorthy, K., Brand, A., 2021, Diagnosis
of Chlamydia trachomatis genital infections in the era of genomic medicine.
Brazilian Journal of Microbiology, 52(3), 1327-1339,
doi:10.1007/s42770-021-00533-z.
[46]. Daloglu, H., 2023, Chlamydia pneumoniae and
Childhood Asthma. In Chlamydia-Secret Enemy from Past to Present. IntechOpen,
1(1):1-17, doi: 10.5772/intechopen.111711.
[47]. Alabsy, E. H., Alabdaly, Y. Z., 2022,
Therapeutic effect of taurine on sodium fluoride toxicity in chicks. Iraqi
Journal of Veterinary Sciences, 36(1), 223-238,
doi:10.33899/ijvs.2021.129854.1692.
[48]. Webley, W. C., Hahn, D. L., 2017,
Infection-mediated asthma: etiology, mechanisms and treatment options, with
focus on Chlamydia pneumoniae and macrolides. Respiratory research, 18,
1-12, doi:10.1186/s12931-017-0584-z.
[49]. Hahn, D. L., 2021, Chlamydia pneumoniae and
chronic asthma: updated systematic review and meta-analysis of population
attributable risk. PLoS One, 16(4), 1-21, doi:
10.1371/journal.pone.0250034.