Development and Characterization of Gadolinium-Doped Hydroxyapatite to Enhance Biocompatibility in Biomedical Applications

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art033

Authors : Swadhi Radhakrishnan, Gayathri Krishnan, Anitha Rexalin Devaraj, Rajesh Krishnan, Anandan Kasinatha

Abstract:

The synthesis and characterization of gadolinium-doped brucinium hydroxyapatite (Gd-BHAP) have garnered significant attention for their potential applications in bone regeneration and dentistry. Hydroxyapatite (HAP) closely resembles the mineral phase of bone, exhibiting biocompatibility, biodegradability, and bioactivity. Hence, this study aims to synthesize and characterize Gd-BHAP to evaluate its potential for enhancing biocompatibility and effectiveness in bone regeneration applications. Gd-BHAP was synthesized via a hydrothermal method using calcium nitrate tetrahydrate and diammonium hydrogen phosphate as precursors, maintaining a calcium-to-phosphate molar ratio of 1:6. Dual dopants, brucine (1%) and gadolinium (+0.5%, 1%, and 2% concentrations), were incorporated, with the pH adjusted to 9. Characterization was performed using XRD, SEM, DLS, FTIR, Fluorescence and UV-Vis spectroscopy. The cytotoxicity of Gd-BHAP was evaluated on Vero cells using the MTT assay across varying concentrations (25–200 µg/mL). Results indicated that the characterization techniques confirmed the successful synthesis of Gd-BHAP, demonstrating rod-shaped morphology and sizes ranging from 70 to 121 nm. FTIR analysis revealed typical absorption bands of hydroxyapatite, while XRD patterns matched known standards for HA, indicating a hexagonal phase. Cytotoxicity results showed a concentration-dependent decrease in Vero cell viability, with 84% viability at 25 µg/mL, decreasing to 73% at 200 µg/mL, indicating acceptable biocompatibility for potential biomedical applications. In conclusion, the synthesized gadolinium-doped brucinium hydroxyapatite exhibits promising characteristics for biomedical applications, particularly in bone regeneration. While higher concentrations may reduce cell viability, the material demonstrates significant biocompatibility, positioning it as a suitable candidate for tissue engineering.

References:

[1].   Lara-Ochoa, S., Ortega-Lara, W., & Guerrero-Beltrán, C. E., 2021. Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications. Pharmaceutics13(10), 1642.

[2].   Cheng, X., Wei, J., Ge, Q., Xing, D., Zhou, X., Qian, Y., & Jiang, G. 2021. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Delivery28(1), 37-53.

[3].   De Lama-Odría, M. D. C., Del Valle, L. J., & Puiggalí, J. 2022. Hydroxyapatite biobased materials for treatment and diagnosis of cancer. International journal of molecular sciences23(19), 11352.

[4].   Dorozhkin, S. V., 2015. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. Journal of functional biomaterials6 (3), 708-832.

[5].   Radha, G., Manjubaashini, N., & Balakumar, S., 2023. Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. In vitro models2(5), 125-151.

[6].   Oni, O. P., Hu, Y., Tang, S., Yan, H., Zeng, H., Wang, H., & Ran, J. 2023. Syntheses and applications of mesoporous hydroxyapatite: a review. Materials Chemistry Frontiers7(1), 9-43.

[7].   Ielo, I., Calabrese, G., De Luca, G., & Conoci, S. 2022. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International journal of molecular sciences23(17), 9721.

[8].   Li, L. H., Kim, H. W., Lee, S. H., Kong, Y. M., & Kim, H. E. 2005. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. Journal of Biomedical Materials Research. Part A 73(1), 48-54.

[9].   Turon, P., Del Valle, L. J., Alemán, C., & Puiggalí, J., 2017. Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Applied Sciences7(1), 60.

[10].  Aminzare, M., Eskandari, A., Baroonian, M. H., Berenov, A., Hesabi, Z. R., Taheri, M., & Sadrnezhaad, S. K. 2013. Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International39(3), 2197-2206.

[11].  Woodard, J. R., Hilldore, A. J., Lan, S. K., Park, C. J., Morgan, A. W., Eurell, J. A. C., & Johnson, A. J. W. 2007. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials28(1), 45-54.

[12].  He, P., Sahoo, S., Ng, K. S., Chen, K., Toh, S. L., & Goh, J. C. H., 2013. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk‐based tissue‐engineered ligament scaffold. Journal of Biomedical Materials Research part A101(2), 555-566.

[13].  Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., & Wei, J., 2021. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals11(2), 149.

[14].  Kang, S., Haider, A., Gupta, K. C., Kim, H., & Kang, I., 2022. Chemical bonding of biomolecules to the surface of nano-hydroxyapatite to enhance its bioactivity. Coatings12(7), 999.

[15].  Dutta, S. R., Passi, D., Singh, P., & Bhuibhar, A., 2015. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Irish Journal of Medical Science 184(1), 101-106.

[16].  Lett, J. A., Sagadevan, S., Fatimah, I., Hoque, M. E., Lokanathan, Y., Léonard, E., & Oh, W. C., 2021. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal148, 110360.

[17].  Sprio, S., Dapporto, M., Preti, L., Mazzoni, E., Iaquinta, M. R., Martini, F., & Tampieri, A., 2020. Enhancement of the biological and mechanical performances of sintered hydroxyapatite by multiple ions doping. Frontiers in Materials7, 224.

[18].  Zhao, X., Yang, Z., Liu, Q., Yang, P., Wang, P., Wei, S., & Zhao, Z., 2022. Potential load-bearing bone substitution material: carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties. ACS Biomaterials Science & Engineering8(2), 921-938.

[19].  Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., & Baino, F. 2021. Hydroxyapatite for biomedical applications: A short overview. Ceramics4(4), 542-563.

[20].  Radulescu, D. E., Vasile, O. R., Andronescu, E., & Ficai, A., 2023. Latest research of doped hydroxyapatite for bone tissue engineering. International Journal of Molecular Sciences24(17), 13157.

[21].  Du, M., Chen, J., Liu, K., Xing, H., & Song, C., 2021. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites Part B: Engineering215, 108790.

[22].  Mondal, S., Park, S., Choi, J., Vo, T. M. T., Shin, J. H., Kang, Y. H., & Oh, J., 2020. Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications. Ceramics International46(18), 29249-29260.

[23].  Gu, M., Li, W., Jiang, L., & Li, X., 2022. Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta Biomaterialia148, 22-43.

[24].  Somoza, M., Rial, R., Liu, Z., Llovo, I. F., Reis, R. L., Mosqueira, J., & Ruso, J. M., 2023. Microfluidic fabrication of gadolinium-doped hydroxyapatite for theragnostic applications. Nanomaterials13(3), 501.

[25].  Uskoković, V., 2015. The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC advances5(46), 36614-36633.

[26].  Mushtaq, A., Zhao, R., Luo, D., Dempsey, E., Wang, X., Iqbal, M. Z., & Kong, X., 2021. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Materials & Design197, 109269.

[27].  Lv, Y., Shi, Q., Jin, Y., Ren, H., Qin, Y., Wang, B., & Song, S., 2018. Preparation and Luminescent Properties of the antibacterial materials of the La3+ Doped Sm3+-Hydroxyapatite. In Journal of Physics: Conference Series 986(1)

[28].  Kim, H. K., Lee, G. H., & Chang, Y., 2018. Gadolinium as an MRI contrast agent. Future Medicinal Chemistry10(6), 639-661.

[29].  Fatima, A., Ahmad, M. W., Al Saidi, A. K. A., Choudhury, A., Chang, Y., & Lee, G. H., 2021. Recent advances in gadolinium based contrast agents for bioimaging applications. Nanomaterials11(9), 2449.

[30].  Grobner, T., & Prischl, F. C., 2007. Gadolinium and nephrogenic systemic fibrosis. Kidney international72(3), 260-264.

[31].  Wei, M., Evans, J. H., Bostrom, T., & Grøndahl, L., 2003. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. Journal of materials science: Materials in medicine14(4), 311-320.

[32].  Rapacz-Kmita, A., Paluszkiewicz, C., Ślósarczyk, A., & Paszkiewicz, Z., 2005. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. Journal of Molecular Structure744, 653-656.

[33].  Shaltout, A. A., Allam, M. A., & Moharram, M. A., 2011. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy83(1), 56-60.

[34].  Abifarin, J. K., Obada, D. O., Dauda, E. T., & Dodoo-Arhin, D., 2019. Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in brief26, 104485.

[35].  Zhang, C., Yang, J., Quan, Z., Yang, P., Li, C., Hou, Z., & Lin, J., 2009. Hydroxyapatite nano-and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crystal Growth and Design9(6), 2725-2733.

[36].  Marković, S., Veselinović, L., Lukić, M. J., Karanović, L., Bračko, I., Ignjatović, N., & Uskoković, D., 2011. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomedical Materials6(4), 045005.

[37].  Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A., 2013. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci, 8(32), 1639-1645.

[38].  Montalbano, G., Molino, G., Fiorilli, S., & Vitale-Brovarone, C., 2020. Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. Journal of the European Ceramic Society, 40(11), 3689-3697.

[39].  Machla, F., Sokolova, V., Platania, V., Prymak, O., Kostka, K., Kruse, B., & Bakopoulou, A., 2023. Tissue engineering at the dentin-pulp interface using human treated dentin scaffolds conditioned with DMP1 or BMP2 plasmid DNA-carrying calcium phosphate nanoparticles. Acta Biomaterialia, 159, 156-172.

[40].  Nenad L. Ignjatović, Lidija Mančić, MarinaVuković, Zoran Stojanović, MarkoG. Nikolić, Srečo Škapin, Sonja Jovanović, LjiljanaVeselinović, Vuk Uskoković, Snežana Lazić, Smilja Marković, Miloš M. Lazarević & Dragan P. Uskoković, 2019. Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific reports, 9:16305

[41].  James J. Hagan, Susan Cicero Taylor, and Michael F. Tweedle 1988. Fluorescence Detection of Gadolinium Chelates Separated by Reversed-Phase High-Performance Liquid Chromatography, American Chemical Society, 60, 514-516.

[42].  Doan, V. H. M., Vu, D. D., Mondal, S., Vo, T. M. T., Ly, C. D., Nguyen, V. T., & Oh, J., 2023. Yb–Gd Codoped Hydroxyapatite as a Potential Contrast Agent for Tumor-Targeted Biomedical Applications. ACS Biomaterials Science & Engineering, 9 (8), 4607-4618.

[43].  Minh, D. V. H., 2022. Biomedical instruments design and development focused on ultrasound, fluorescence, and photoacoustic imaging-guided therapeutic modalities, Doctoral dissertation, 부경대학교.

[44].  Sha, S., Zhang, L., Liu, H., Chen, J., Che, Y., Zhang, F., & Song, C., 2021. Synthesis and visible-light photocatalytic degradation of Ag 3 PO 4/AgBr/hydroxyapatite ternary nanocomposites prepared from oyster shells. RSC advances, 11(26), 15598-15607.

[45].  Kpemissi, M., Eklu-Gadegbeku, K., Veerapur, V. P., Potârniche, A. V., Adi, K., Vijayakumar, S., Banakar, S. M., Thimmaiah, N. V., Metowogo, K., & Aklikokou, K., 2019. Antioxidant and nephroprotection activities of Combretum micranthum: A phytochemical, in-vitro and ex-vivo studies. Heliyon, 5(3), e01365.

[46].  Do Amaral, M. B., Viana, R. B., Viana, K. B., Diagone, C. A., Denis, A. B., & de Guzzi Plepis, A. M., 2020. In vitro and in vivo response of composites based on chitosan, hydroxyapatite and collagen. Acta Scientiarum. Technology, 42.