Potential Role of Anticancer Compounds Derived from Phytomedicines in Modulating the Signaling Pathways for Cancer Progression - A Review

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art029

Authors : Rajagopal P, Sridevi Gopathy, A. Arockya Stafi, L. Durga, K Shanmuga priya

Abstract:

One of the most prevalent causes of death globally is cancer, which is a consequence of uncontrolled proliferation and division of cells in the body. The role of inflammation in tumour progression has been increasingly established. It also affects epigenetic changes that promote tumour induction and promotes all stages of carcinogenesis. Chronic inflammation may result in greater damage to DNA, interfere with DNA repair mechanisms, accelerate cellular division, and induce apoptosis, angiogenesis, and invasion of the tissue. A comprehensive knowledge of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is essential for the advancement of anti-cancer medications which concentrate on the interaction between malignancy formation and inflammatory mechanisms. Several inflammatory signalling pathways have been identified as regulating inflammation, including the NF-κB signalling pathway, the JAK-STAT signalling pathway, the MAPK signalling, the PI3K/AKT/mTOR signalling and the Wnt signalling cascade. Several phytochemicals can treat cancer by altering these pathways. There are numerous classes of phytochemicals in herbal medicine that are being used therapeutically. Herbal medicine has shown to be especially beneficial for cancer patients, with many reporting a considerable increase in survivorship as a result of treatment. Cellular metabolism, tumour development, growth, proliferation, metastasis, and cytoskeletal reorganization are all regulated by aberrations in different cellular signalling pathways. The primary emphasis of the current review focuses on the phytochemical’s capacity to combat cancer through modifying numerous cell signalling pathways.

References:

[1].  “What Is Cancer? was originally published by the National Cancer Institute” updated on October 11, 2021.

[2].  Madihalli Somashekharaiah Chandraprasad, Abhijit Dey, Mallappa Kumara Swamy, 2022, 1 - Introduction to cancer and treatment approaches, Editor(s): Mallappa Kumara Swamy, T. Pullaiah, Zhe-Sheng Chen, Paclitaxel, Academic Press, pp. 1-27, ISBN 9780323909518, https://doi.org/10.1016/B978-0-323-90951-8.00010-2

[3].  Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research. Nov 1;13(6):704-13.

[4].  Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2020, Global Cancer Statistics: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.

[5].  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., Jemal, A., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4. PMID: 38572751.

[6].  Saad, E. l Din, K., Loree, J. M., Sayre, E. C., Gill S., Brown, C. J., Dau, H., De Vera, M. A., 2020, Trends in the epidemiology of young-onset colorectal cancer: A worldwide systematic review. BMC Cancer. Apr 6;20(1):288. doi: 10.1186/s12885-020-06766-9. PMID: 32252672; PMCID: PMC7137305.

[7].  Lin, S., Gao, K., Gu, S., You, L., Qian, S., Tang, M., Wang, J., Chen, K., Jin, M., 2021, Worldwide trends in cervical cancer incidence and mortality, with predictions for the next 15 years. Cancer. Nov 1;127(21):4030-4039. doi: 10.1002/cncr.33795. Epub 2021 Aug 9. PMID: 34368955.

[8].  Global cancer burden growing, amidst mounting need for services was originally published by The International Agency for Research on Cancer (IARC) is the cancer agency of the World Health Organisation- 1 February 2024

[9].  Choudhari A. S., Mandave P. C., Deshpande M., Ranjekar P., Prakash O., Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol. 2020 Jan 28;10:1614. doi: 10.3389/fphar.2019.01614. Erratum in: Front Pharmacol. 2020 Feb 28;11:175. doi: 10.3389/fphar.2020.00175. PMID: 32116665; PMCID: PMC7025531.

[10]. Pazhani J., Chanthu K., Jayaraman S., Varun B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology. Oct 1;27(4):649-54.

[11]. Lee W. L., Huang J. Y., Shyur L. F., 2013, Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev.;2013:925804. doi: 10.1155/2013/925804. Epub 2013 Dec 25. PMID: 24454991; PMCID: PMC3886269.

[12]. Yan, X., Xie, T., Wang, S., Wang, Z., Li, H., & Ye, Z., 2018. Apigenin inhibits proliferation of human chondrosarcoma cells via cell cycle arrest and mitochondrial apoptosis induced by ROS generation-an in vitro and in vivo study. Int J Clin Exp Med, 11(3):1615-1631 www.ijcem.com /ISSN:1940-5901/IJCEM0057902.

[13]. Lu, L., Zhao, Z., Liu, L., Gong, W., and Dong, J., 2018, Combination of baicalein and docetaxel additively inhibits the growth of non-small cell lung cancer in vivo. Tradit. Med. Modern Med. 01 (03), 213–218. doi: 10.1142/ S2575900018500131.

[14]. Farnsworth N. R., Akerele O., Bingel A. S., Soejarto D. D., Guo Z., 1985, Medicinal plants in therapy. Bull World Health Organ.;63(6):965-81. PMID: 3879679; PMCID: PMC2536466.

[15]. Michael Heinrich, Joanne Barnes, Simon Gibbons, Elizabeth M., Williamson Foreword by A. Douglas Kinghorn, Chapter 8-Anticancer natural products, Fundamentals of pharmacognosy and phytotherapy, First edition 2004, Second edition 2012- ISBN 978-0-7020-3388-9- © 2012 Elsevier Ltd.

[16]. Kerry Bone,Simon Mills Forewords by Michael Dixon, Mark Blumenthal- Malignant diseases- Herbal approaches to pathological states, Chapter 8, Principles and Practice of Phytotherapy Modern Herbal Medicine, First edition 2000, Second edition 2013-ISBN 978-0-443-06992-5-© 2013 Elsevier Ltd.

[17]. Bansal S., Vyas S., Bhattacharya S., Sharma M., 2013, Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep. Oct 11;30(11):1438-54. doi: 10.1039/c3np70038k. PMID: 24056761.

[18]. Gullett N. P., Ruhul Amin A. R., Bayraktar S., Pezzuto J. M., Shin D. M., Khuri F. R., Aggarwal B. B., Surh Y. J., Kucuk O., 2010, Cancer prevention with natural compounds. Semin Oncol. Jun;37(3):258-81. doi: 10.1053/j.seminoncol.2010.06.014. PMID: 20709209.

[19]. Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P. and Jasmine, S., 2023. Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), pp.1007-1013.

[20]. Sruthi M. A., Mani G., Ramakrishnan M., Selvaraj J., Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry. 2023 Jan;33(1):82-8.

[21]. Morgensztern D., McLeod H. L., 2005, PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. Sep;16(8):797-803. doi: 10.1097/01.cad.0000173476.67239.3b. PMID: 16096426.

[22]. Jiri Polivka, Filip Janku, Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway, Pharmacology & Therapeutics, Volume 142, Issue 2, 2014, pp. 164-175, ISSN 0163-7258, https://doi.org/10.1016/j.pharmthera.2013.12.004.

[23]. Anna Prossomariti, Giulia Piazzi, Chiara Alquati, Luigi Ricciardiello, 2020, Are Wnt/β-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer?, Cellular and Molecular Gastroenterology and Hepatology, Volume 10, Issue 3, pp. 491-506, ISSN 2352-345X, https://doi.org/10.1016/j.jcmgh.2020.04.007.

[24]. Chen J., 2013, Potential value and limitation of dual inhibitors of PI3K and mTOR in the treatment of cancer. Curr Cancer Drug Targets. Feb;13(2):117-20. doi: 10.2174/1568009611313020001. PMID: 23215718.

[25]. Chen, S., Fisher, R. C., Signs, S., Molina, L. A., Shenoy, A. K., Lopez, M. C., Baker, H. V., Koomen, J. M., Chen, Y., Gittleman, H., Barnholtz-Sloan, J., Berg, A., Appelman, H. D., & Huang, E. H., 2017, Inhibition of PI3K/Akt/mTOR signaling in PI3KR2-overexpressing colon cancer stem cells reduces tumor growth due to apoptosis. Oncotarget, 8(31), 50476-50488. https://doi.org/10.18632/oncotarget.9919

[26]. Mangiapane L. R., Nicotra A., Turdo A., Gaggianesi M., Bianca P., et al., 2022, PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut. Jan;71(1):119-128. doi: 10.1136/gutjnl-2020-323553. Epub 2021 Jan 12. PMID: 33436496; PMCID: PMC8666826.

[27]. Cai Z., Ke J., He X., Yuan R., Chen Y., Wu X., Wang L., Wang J., Lan P., Wu X., 2014, Significance of mTOR signaling and its inhibitor against cancer stem-like cells in colorectal cancer. Ann Surg Oncol. Jan;21(1):179-88. doi: 10.1245/s10434-013-3146-8. Epub 2013 Aug 2. PMID: 23907312.

[28]. Malkomes, P., Lunger, I., Luetticke, A. et al., 2016,  Selective AKT Inhibition by MK-2206 Represses Colorectal Cancer-Initiating Stem Cells. Ann Surg Oncol 23, 2849–2857. https://doi.org/10.1245/s10434-016-5218-z.

[29]. Chang, L., Graham, P. H., Hao, J., Bucci, J., Cozzi, P. J., Kearsley, J. H., Li, Y., 2014, Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev. Sep;33(2-3):469-96. doi: 10.1007/s10555-014-9493-5. PMID: 24445654.

[30]. Sircar, K., Yoshimoto, M., Monzon, F. A., Koumakpayi, I. H., Katz, R. L., Khanna, A., Alvarez, K., Chen, G., Darnel, A. D., Aprikian, A. G., Saad F., Bismar, T. A., Squire, J. A., 2009, PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol. Aug;218(4):505-13. doi: 10.1002/path.2559. PMID: 19402094.

[31]. de Muga, S., Hernández, S., Agell, L., Salido, M., Juanpere, N., Lorenzo, M., Lorente, J. A., Serrano, S., Lloreta, J., 2010, Molecular alterations of EGFR and PTEN in prostate cancer: association with high-grade and advanced-stage carcinomas. Mod Pathol. May;23(5):703-12. doi: 10.1038/modpathol.2010.45. Epub 2010 Mar 5. PMID: 20208477.

[32]. Niraj Kumar, Jha, Saniya Arfin, Saurabh Kuma,r Jha, Rohan Kar, Abhijit Dey, Rohit Gundamaraju, Ghulam, M. d., Ashraf, Piyush Kumar Gupta, Sugapriya Dhanasekaran, Mosleh Mohammad Abomughaid, Sabya Sachi Das, Sachin Kumar Singh, Kamal Dua, Shubhadeep Roychoudhury, Dhruv Kumar, Janne Ruokolainen, Shreesh Ojha, Kavindra Kumar Kesari, Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling, Seminars in Cancer Biology, Volume 86, Part 2, 2022, pp. 1086-1104, ISSN 1044-579X, https://doi.org/10.1016/j.semcancer.2022.02.022.

[33]. Akkoç, Y., Berrak, Ö., Arısan, E. D., Obakan, P., Çoker-Gürkan, A., Palavan-Ünsal, N., 2015, Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biomed Pharmacother., Apr;71:161-71. doi: 10.1016/j.biopha.2015.02.029. Epub 2015 Mar 4. PMID: 25960232.

[34]. Guan F., Ding Y., Zhang Y., Zhou Y., Li M., Wang C., 2016, Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation. PLoS One. Jan 11;11(1):e0146553. doi: 10.1371/journal.pone.0146553. Retraction in: PLoS One. 2023 Mar 15;18(3):e0283354. doi: 10.1371/journal.pone.0283354. PMID: 26752181; PMCID: PMC4708990.

[35]. Ibrahim RS, Ibrahim S. S., El-Naas A., Koklesová L., Kubatka P., Büsselberg D., 2023, Could Metformin and Resveratrol Support Glioblastoma Treatment? A Mechanistic View at the Cellular Level. Cancers (Basel). Jun 27;15(13):3368. doi: 10.3390/cancers15133368. PMID: 37444478; PMCID: PMC10340608.

[36]. Cháirez-Ramírez, M. H., de la Cruz-López, K. G, García-Carrancá, A., 2021, Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol. Oct 20;12:710304. doi: 10.3389/fphar.2021.710304. PMID: 34744708; PMCID: PMC8565650.

[37]. Krishnan, Reshma Poothakulath, et al. 2025, "Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing." Journal of Stomatology, Oral and Maxillofacial Surgery 126.4, 102120.

[38]. Bhullar, K. S., Jha, A., Rupasinghe, H. P., 2015, Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact., Dec 5;242:107-22. doi: 10.1016/j.cbi.2015.09.020. Epub 2015 Sep 26. PMID: 26409325.

[39]. Zhao, Z., Li, C., Xi, H., Gao, Y., Xu, D., 2015, Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3K/Akt pathway. Mol Med Rep. Oct;12(4):5415-22. doi: 10.3892/mmr.2015.4060. Epub 2015 Jul 8. PMID: 26166196.

[40]. Xu, X., Qin, J., Liu, W., 2014, Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene. Aug 10;546(2):226-32. doi: 10.1016/j.gene.2014.06.006. Epub 2014 Jun 6. PMID: 24910117.

[41]. Jiang Q. G., Li T. Y., Liu D. N., Zhang H. T., 2014, PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Mol Biol Rep. May;41(5):3359-67. doi: 10.1007/s11033-014-3198-2. Epub 2014 Feb 5. PMID: 24496855.

[42]. Lee, J. H., Jang, J. Y., Park, C., Kim, B. W., Choi, Y. H., Choi B. T., Curcumin suppresses alpha-melanocyte stimulating hormone-stimulated melanogenesis in B16F10 cells. Int J Mol Med. 2010 Jul;26(1):101-6. PMID: 20514428.

[43]. Kim M. O., Lee M. H., Oi N., Kim S. H., Bae K. B., Huang Z., Kim D. J., Reddy K., Lee S. Y., Park S. J., Kim J. Y., Xie H., Kundu J. K., Ryoo Z. Y., Bode A. M., Surh Y. J., Dong Z., 2014, [6]-shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2. Carcinogenesis. Mar;35(3):683-91. doi: 10.1093/carcin/bgt365. Epub 2013 Nov 26. Erratum in: Carcinogenesis. 2014 May;35(5):1193. PMID: 24282290; PMCID: PMC3941745.

[44]. Sagar S., Ramani P., Moses S., Gheena S., Selvaraj J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology. Feb 6:1-0.

[45]. Yasothkumar D., Ramani P., Jayaraman S., Ramalingam K., Tilakaratne W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology. Mar 27;18(1):28.

[46]. Jane, D Holland, Alexandra Klaus, Alistair N Garratt, Walter Birchmeier, 2013, Wnt signaling in stem and cancer stem cells, Current Opinion in Cell Biology, Volume 25, Issue 2, pp. 254-264, ISSN 0955-0674, https://doi.org/10.1016/j.ceb.2013.01.004.

[47]. Wend, P., Holland, J. D., Ziebold U., Birchmeier W., 2010, Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. Oct;21(8):855-63. doi: 10.1016/j.semcdb.2010.09.004. Epub 2010 Sep 15. PMID: 20837152.

[48]. Sun, J., Yan, P., Chen, Y., Chen, Y., Yang, J., Xu, G., Mao, H., Qiu, Y., 2015, MicroRNA-26b inhibits cell proliferation and cytokine secretion in human RASF cells via the Wnt/GSK-3β/β-catenin pathway. Diagn Pathol. Jun 19;10:72. doi: 10.1186/s13000-015-0309-x. PMID: 26088648; PMCID: PMC4472173.

[49]. Martins-Neves S. R., Corver W. E., Paiva-Oliveira D. I., van den Akker B. E., Briaire-de-Bruijn I. H., Bovée J. V., Gomes C. M., Cleton-Jansen A. M., 2016, Osteosarcoma Stem Cells Have Active Wnt/β-catenin and Overexpress SOX2 and KLF4. J Cell Physiol., Apr;231(4):876-86. doi: 10.1002/jcp.25179. Epub 2015 Sep 9. PMID: 26332365.

[50]. Miyoshi, Y., Iwao, K., Nagasawa, Y., Aihara, T., Sasaki, Y., Imaoka, S., Murata, M., Shimano, T., Nakamura, Y., 1998, Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res., Jun 15;58(12):2524-7. PMID: 9635572.

[51]. Huang, G. L., Zhang, W., Ren H. Y., Shen X. Y., Chen Q. X., Shen D. Y., Retinoid X receptor α enhances human cholangiocarcinoma growth through simultaneous activation of Wnt/β-catenin and nuclear factor-κB pathways. 2015, Cancer Sci., Nov;106(11):1515-23. doi: 10.1111/cas.12802. Epub 2015 Oct 7. PMID: 26310932; PMCID: PMC4714697.

[52]. Wu G., Liu A., Zhu J., Lei F., Wu S., Zhang X., Ye L., Cao L., He S., 2015, MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget. Oct 6;6(30):28882-94. doi: 10.18632/oncotarget.4921. PMID: 26337084; PMCID: PMC4745698.

[53]. Du Q., Zhang X., Cardinal J., Cao Z., Guo Z., Shao L., Geller D. A., 2009, Wnt/beta-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res. May 1;69(9):3764-71. doi: 10.1158/0008-5472.CAN-09-0014. Epub 2009 Apr 21. PMID: 19383900.

[54]. Logan C. Y., Nusse R., 2004, The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol.; 20:781-810. doi: 10.1146/annurev.cellbio.20.010403.113126. PMID: 15473860.

[55]. Pandey, P., Khan, F., Seifeldin, S. A., Alshaghdali, K., Siddiqui, S., Abdelwadoud, M. E., Vyas, M., Saeed, M., Mazumder, A., Saeed, A., 2023, Targeting Wnt/β-Catenin Pathway by Flavonoids: Implication for Cancer Therapeutics. Nutrients. Apr 26;15(9):2088. doi: 10.3390/nu15092088. PMID: 37432240; PMCID: PMC10181252.

[56]. Mukherjee, S., Mazumdar, M., Chakraborty, S. et al., 2014, Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther 5, 116, https://doi.org/10.1186/scrt506.

[57]. Somers-Edgar T. J., Taurin S., Larsen L., Chandramouli A., Nelson M. A., Rosengren R. J., 2011, Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines. Invest New Drugs. Feb;29(1):87-97. doi: 10.1007/s10637-009-9339-0. Epub 2009 Oct 9. PMID: 19816657.

[58]. Lu, Y., Wei, C., Xi, Z., 2014, Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim. Oct;50(9):840-50. doi: 10.1007/s11626-014-9779-5. Epub 2014 Jun 18. PMID: 24938356.

[59]. Lai C. S., Wu J. C., Yu S. F., Badmaev V., Nagabhushanam K., Ho C. T., Pan M. H., 2011, Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol Nutr Food Res. Dec;55(12):1819-28. doi: 10.1002/mnfr.201100290. Epub 2011 Sep 2. PMID: 21887819.

[60]. Fathima J. S., Jayaraman S., Sekar R., Syed N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology. Apr 15:1-0.

[61]. Kunnumakkara A. B., Bordoloi D., Harsha C., Banik K., Gupta S. C., Aggarwal B. B., 2017, Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond). Jul 5;131(15):1781-1799. doi: 10.1042/CS20160935. PMID: 28679846.

[62]. Zhang, Y., Li Q., Zhou D., Chen H., 2013, Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/β-catenin signalling and reduces colon pre-neoplasia in rats. Br J Nutr. Jan 14;109(1):33-42. doi: 10.1017/S0007114512000876. Epub 2012 Apr 3. PMID: 22716201.

[63]. Hsiao Y. C., Peng S. F., Lai K. C., Liao C. L., Huang Y. P., Lin C. C., Lin M. L., Liu K. C., Tsai C. C., Ma Y. S., Chung J. G., 2019, Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ Toxicol. Apr;34(4):443-456. doi: 10.1002/tox.22698. Epub 2019 Jan 7. PMID: 30618158.

[64]. Chen H., Zhu B., Zhao L., Liu Y., Zhao F., Feng J., Jin Y., Sun J., Geng R., Wei Y., 2018, Allicin Inhibits Proliferation and Invasion in Vitro and in Vivo via SHP-1-Mediated STAT3 Signaling in Cholangiocarcinoma. Cell Physiol Biochem.;47(2):641-653. doi: 10.1159/000490019. Epub 2018 May 22. PMID: 29794468.

[65]. Huang, L., Song, Y., Lian J., Wang Z., 2017, Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signaling. Oncol Lett. Jul;14(1):468-474. doi: 10.3892/ol.2017.6129. Epub 2017 May 5. PMID: 28693193; PMCID: PMC5494782.

[66]. Chang J. H., Cheng C. W., Yang Y. C., Chen W. S., Hung W. Y., Chow J. M., Chen P. S., Hsiao M., Lee W. J., Chien M. H., 2018, Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J Exp Clin Cancer Res. Aug 22;37(1):199. doi: 10.1186/s13046-018-0869-1. PMID: 30134935; PMCID: PMC6104010.

[67]. Lee, Y. C., Lin, H. H., Hsu, C. H., Wang, C. J., Chiang T. A., Chen J. H., 2010, Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol. Apr 25;632(1-3):23-32. doi: 10.1016/j.ejphar.2010.01.009. Epub 2010 Jan 25. PMID: 20097193.

[68]. Li, J., Zhang, C., Jiang, H., Cheng, J., 2015, Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth. Onco Targets Ther. Feb 13;8:427-35. doi: 10.2147/OTT.S76116. PMID: 25709476; PMCID: PMC4335622.

[69]. Dou J., Wang Z., Ma L., Peng B., Mao K., Li C., Su M., Zhou C., Peng G., 2018, Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget. Jan 8;9(28):20089-20102. doi: 10.18632/oncotarget.24015. PMID: 29732005; PMCID: PMC5929448.

[70]. Deng Q. P., Wang M. J., Zeng X., Chen G. G., Huang R. Y., 2017, Effects of Glycyrrhizin in a Mouse Model of Lung Adenocarcinoma. Cell Physiol Biochem.;41(4):1383-1392. doi: 10.1159/000467897. Epub 2017 Mar 16. PMID: 28315871.

[71]. Tuorkey M. J., 2016, Molecular targets of luteolin in cancer. Eur J Cancer Prev. Jan;25(1):65-76. doi: 10.1097/CEJ.0000000000000128. PMID: 25714651; PMCID: PMC4885545.

[72]. Subramani R., Gonzalez E., Arumugam A., Nandy S., Gonzalez V., Medel J., Camacho F., Ortega A., Bonkoungou S., Narayan M., Dwivedi A. k., Lakshmanaswamy R., 2016, Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci Rep. Jan 25;6:19819. doi: 10.1038/srep19819. PMID: 26804739; PMCID: PMC4726267.

[73]. Pan, M. H., Lin Y. T., Lin C. L., Wei C. S., Ho C. T., Chen W. J., 2011, Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation. Evid Based Complement Alternat Med.;2011:562187. doi: 10.1093/ecam/nep093. Epub 2011 Feb 14. PMID: 19617202; PMCID: PMC3136680.

[74]. Pan M. H., Chiou Y. S., Chen W. J., Wang J. M., Badmaev V., Ho C. T., 2009, Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis. Jul;30(7):1234-42. doi: 10.1093/carcin/bgp121. Epub 2009 May 15. PMID: 19447859.

[75]. Wang Y., Ding L., Wang X., Zhang J., Han W., Feng L., Sun J., Jin H., Wang X. J., 2012, Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am J Transl Res.;4(1):44-51. Epub 2012 Jan 5. PMID: 22347521; PMCID: PMC3276376.

[76]. De La Chapa J. J., Singha P. K., Lee D. R., Gonzales C. B., 2018, Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med. Aug;47(7):674-682. doi: 10.1111/jop.12735. Epub 2018 Jun 9. PMID: 29777637; PMCID: PMC6105452.

[77]. Zhu W. Q., Wang J., Guo X. F., Liu Z., Dong W. G., 2016, Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J Gastroenterol. Apr 28;22(16):4149-59. doi: 10.3748/wjg.v22.i16.4149. PMID: 27122665; PMCID: PMC4837432.