Polysaccharides in Organ Fibrosis: Therapeutic and Preventive Effects Through Gut Microbiota Modulation

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art027

Authors : Ranjithkumar Rajamani, Nallusamy Duraisamy, Deepan Sundararaj, Sai Laasya Reddy Iska, Neha Mariam Joseph, V. Bharathi

Abstract:

Fibrosis is characterized by the proliferation of fibrous tissue and decreased functional cells within the affected organs, ultimately resulting in organ damage or failure. The incidence of this pathological process is on the rise globally, necessitating the development of more efficient therapeutic interventions. Recent scientific investigations have put forth the idea that polysaccharides extracted from natural sources exhibit promising abilities in alleviating fibrotic conditions by mitigating inflammatory responses and influencing intestinal microbiota composition. This scholarly discourse delves into the intricate relationship between polysaccharides and organ fibrosis concerning the dynamics of the intestinal microbiota, offering profound insights that could significantly influence the direction of future endeavours in drug development and treatment modalities. The in-depth exploration of these interconnected factors holds immense potential in shaping innovative strategies to combat fibrosis-related disorders and enhance patient outcomes in a clinical setting. The potential impact of this research on future drug development and treatment modalities cannot be overstated, as it underscores the importance of the study and its potential to influence the direction of future research in the field.


References:

[1].   Jun, J.-I., Lau, L. F., 2018, Resolution of organ fibrosis, The Journal of Clinical Investigation, 128, 97–107. https://www.jci.org/articles/view/93563

[2].   Cheong, K.-L., Yu, B., Teng, B., Veeraperumal, S., Xu, B., et al., 2023, Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides, Biomedicine & Pharmacotherapy, 166, 115320. https://doi.org/10.1016/j.biopha.2023.115320

[3].   Jayaseelan, V. P., 2019, In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens, Journal of Periodontology, 90, 1441-1448. https://doi.org/10.1002/JPER.18-0673. https://doi.org/10.1016/j.sajb.2022.03.015

[4].   Wang, M., Veeraperumal, S., Zhong, S., Cheong, K.-L., 2023, Fucoidan-derived functional oligosaccharides: Recent developments, preparation, and potential applications, Foods, 12, 878. https://doi.org/10.3390/foods12040878

[5].   Corrie, L., Gulati, M., Awasthi, A., Vishwas, S., Kaur, J., et al., 2022, Polysaccharide, fecal microbiota, and curcumin-based novel oral colon-targeted solid self-nanoemulsifying delivery system: Formulation, characterization, and in-vitro anticancer evaluation, Materials Today Chemistry, 26, 101165. https://doi.org/10.1016/j.mtchem.2022.101165

[6].   Zhang, A., Wang, J., Hu, Y., Qiu, Y., Dong, C., 2024, Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress, International Journal of Biological Macromolecules, 131982. https://doi.org/10.1016/j.ijbiomac.2024.131982

[7].   Bhat, A.A., Gupta, G., Alharbi, K.S., Afzal, O., Altamimi, A.S.A., et al., 2022, Polysaccharide-Based Nanomedicines Targeting Lung Cancer, Pharmaceutics, 14, 2788. https://doi.org/10.3390/ pharmaceutics14122788

[8].   Ren, Q., Zhang, L.-y., Li, Z., 2020, Advances in the research of anti-organ fibrosis drugs, Acta Pharmaceutica Sinica, 2510–28.

[9].   Zhao, X., Chen, J., Sun, H., Zhang, Y., Zou, D., 2022, New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction, Cell & Bioscience, 12, 117. https://doi.org/10.1186/s13578-022-00856-w

[10].  Rockey, D. C., Bell, P. D., Hill, J. A., 2015, Fibrosis—a common pathway to organ injury and failure, New England Journal of Medicine, 372, 1138–1149. DOI: 10.1056/NEJMra1300575

[11].  Zhao, M., Wang, L., Wang, M., Zhou, S., Lu, Y., et al., 2022, Targeting fibrosis: Mechanisms and clinical trials, Signal Transduction and Targeted Therapy, 7, 206. https://doi.org/10.1038/s41392-022-01070-3

[12].  Kozawa, S., Tejima, K., Takagi, S., Kuroda, M., Nogami-Itoh, M., et al., 2023, Latent inter-organ mechanism of idiopathic pulmonary fibrosis unveiled by a generative computational approach, Scientific Reports, 13, 21981. https://doi.org/10.1038/s41598-023-49281-0

[13].  Álvarez, J., Real, J. M. F., Guarner, F., Gueimonde, M., Rodríguez, J. M., et al., 2021, Microbiota intestinal y salud, Gastroenterologíay Hepatología, 44, 519–535. 10.1016/j.gastrohep.2021.01.009.

[14].  Wu, Y., Li, Y., Luo, Y., Zhou, Y., Wen, J., et al., 2022, Gut microbiome and metabolites: The potential key roles in pulmonary fibrosis, Frontiers in Microbiology, 13, 943791. https://doi.org/10.3389/fmicb.2022.943791

[15].  Drakopanagiotakis, F., Stavropoulou, E., Tsigalou, C., Nena, E., Steiropoulos, P., 2022, The role of the microbiome in connective-tissue-associated interstitial lung disease and pulmonary vasculitis, Biomedicines, 10, 3195. https://doi.org/10.3390/biomedicines10123195

[16].  Chioma, O. S., Mallott, E. K., Chapman, A., Van Amburg, J. C., Wu, H., et al., 2022, Gut microbiota modulates lung fibrosis severity following acute lung injury in mice, Communications Biology, 5, 1401. https://doi.org/10.1038/s42003-022-04357-x

[17].  Aydın, M. M., Akçalı, K. C., 2018, Liver fibrosis, The Turkish Journal of Gastroenterology, 29, 14. https://doi.org/10.5152/tjg.2018.17330

[18].  Jayaseelan, V. P., Arumugam, P., 2019, Dissecting the theranostic potential of exosomes in autoimmune disorders, Cellular Molecular Immunology, 16, 935-936. https://doi.org/10.1038/s 41423-019-0310-5
Friedman, S. L., 2024, Hepatic fibrosis and cancer: the silent threats of metabolic syndrome, Diabetes & Metabolism Journal, 48, 161. https://doi.org/10.4093/dmj.2023.0240

[19].  Lee, C.-m., Yoon, E. L., Kim, M., Kang, B.-K., Cho, S., et al., 2024, Prevalence, distribution, and hepatic fibrosis burden of the different subtypes of steatotic liver disease in primary care settings, Hepatology, 79, 1393–1400. https://doi.org/10.1097/hep.0000000000000664

[20].  Gao, L.-L., Ma, J.-M., Fan, Y.-N., Zhang, Y.-N., Ge, R., et al., 2021, Lycium barbarum polysaccharide combined with aerobic exercise ameliorated nonalcoholic fatty liver disease through restoring gut microbiota, intestinal barrier and inhibiting hepatic inflammation, International Journal of Biological Macromolecules, 183, 1379–1392. https://doi.org/10.1016/j.ijbiomac.2021.05.066

[21].  Li, S., 2022, Investigation of the Anti-HF Mechanism of Taraxacum mongolicum Polysaccharide with Astragalus Polysaccharide. https://doi.org/10.1016/j.ijbiomac.2023.129193

[22].  Shu, Y., Huang, Y., Dong, W., Fan, X., Sun, Y., et al., 2023, The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism, International Journal of Biological Macromolecules, 246, 125662. https://doi.org/10.1016/j.ijbiomac.2023.125662

[23].  Han, C., Li, Z., Liu, R., Zhao, Z., Wang, Y., et al., 2023, Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5′-monophosphate-activated protein kinase pathway and reshaping gut microbiota, Journal of the Science of Food and Agriculture, 103, 7721–7738. https://doi.org/10.1002/jsfa.12854

[24].  Fang, S., Wang, T., Li, Y., Xue, H., Zou, J., et al., 2022, Gardenia jasminoides Ellis polysaccharide ameliorates cholestatic liver injury by alleviating gut microbiota dysbiosis and inhibiting the TLR4/NF-κB signaling pathway, International Journal of Biological Macromolecules, 205, 23–36. https://doi.org/10.1016/j.ijbiomac.2022.02.056

[25].  Humphreys, B. D., 2018, Mechanisms of renal fibrosis, Annual Review of Physiology, 80, 309–326. https://doi.org/10.1146/annurev-physiol-022516-034227

[26].  Liu, Y., 2011, Cellular and molecular mechanisms of renal fibrosis, Nature Reviews Nephrology, 7, 684–696. https://doi.org/10.1038/nrneph.2011.149

[27].  Nogueira, A., Pires, M. J., Oliveira, P. A., 2017, Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies, In Vivo, 31, 1–22. https://doi.org/10.21873/invivo.11019

[28].  Yang, J., Dong, H., Wang, Y., Jiang, Y., Zhang, W., et al., 2020, Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis, International Journal of Biological Macromolecules, 163, 442–456. https://doi.org/10.1016/j.ijbiomac.2020.06.153

[29].  Zhang, M., Yang, L., Zhu, M., Yang, B., Yang, Y., et al., 2022, Moutan cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats, International Journal of Biological Macromolecules, 206, 849–860. https://doi.org/10.1016/j.ijbiomac.2022.03.077

[30].  Feng, Y., Weng, H., Ling, L., Zeng, T., Zhang, Y., et al., 2019, Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice, International Journal of Biological Macromolecules, 132, 1001–1011. https://doi.org/10.1016/j.ijbiomac.2019.03.242

[31].  Liu, J.-X., Yuan, H.-Y., Li, Y.-N., Wei, Z., Liu, Y., Liang, J., 2022, Ephedra sinica polysaccharide alleviates airway inflammations of mouse asthma-like induced by PM2.5 and ovalbumin via the regulation of gut microbiota and short chain fatty acid, Journal of Pharmacy and Pharmacology, 74, 1784–96. https://doi.org/10.1093/jpp/rgac078

[32].  Shi, C., Zhou, L., Li, H., Shi, X., Zhang, Y., et al., 2022, Intestinal microbiota metabolizing Houttuynia cordata polysaccharides in H1N1 induced pneumonia mice contributed to Th17/Treg rebalance in gut-lung axis, International Journal of Biological Macromolecules, 221, 288–302. https://doi.org/10.1016/j.ijbiomac.2022.09.015