Therapeutic Potential of Gut Microbiota: Insights into Immune Modulation, Metabolite Signaling and Clinical Applications in Inflammatory and Metabolic Diseases

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art025

Authors : Sathasivam Sivamalar, Yatakona Supriya

Abstract:

The gut microbiota is a complex network of microorganisms inhabiting the gastrointestinal tract and it has a great influence on intestinal health. Disbalances within metabolic patterns and microbial diversity may cause inflammatory bowel disease and other diseases. Microorganisms in intestinal mucosa produce metabolites that act as signalling molecules and influence the regulation of inflammation and the immune response. SCFAs and secondary bile acids are metabolites that bind to specific receptors and trigger inflammatory signals that affect intestinal immunity and host health. Moreover, metabolites of tryptophan promote the integrity of the epithelial barrier and also interact with intestinal mucosal aromatic hydrocarbon receptors (AHR) to regulate immune homeostasis. By acting as precursors to AHR ligands together with SCFAs and secondary bile acids, dietary-derived indoles relax the intestinal epithelium inflammation and stress. The mechanistic and therapeutic advances in non-alcoholic fatty liver disease (NAFLD) aim to alter host metabolism, reduce inflammation, and reconstitute the integrity of the gut barrier through changes in the composition of gut microbiota. Since dysbiosis in liver cirrhosis leads to complications such as bacteremia and hepatic encephalopathy, probiotics and synbiotics are being investigated to treat associated metabolic disorders.


References:

[1].   Bengmark, S., 1998, Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut, 42(1), 2-7.

[2].   Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., & Nelson, K. E., 2006, Metagenomic analysis of the human distal gut microbiome. science, 312(5778), 1355-1359.

[3].   Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., & Sugimoto, M., 2016, Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease. Digestion, 93(1), 59-65.

[4].   Yarandi, S. S., Peterson, D. A., Treisman, G. J., Moran, T. H., & Pasricha, P. J., 2016, Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. Journal of neurogastroenterology and motility, 22(2), 201.

[5].   Fu, Y., Lyu, J., & Wang, S., 2023, The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Frontiers in immunology, 14, 1277102.

[6].   Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M., 2013, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid Research, 54(9), 2325-2340.

[7].   Natividad, J. M., & Verdu, E. F., 2013, Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological research, 69(1), 42-51.

[8].   Chang, C., & Lin, H., 2016, Dysbiosis in gastrointestinal disorders. Best practice & research Clinical gastroenterology, 30(1), 3-15.

[9].   Musso, G., Gambino, R., & Cassader, M., 2010, Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes care, 33(10), 2277-2284.

[10].  Louis, P., Hold, G. L., & Flint, H. J., 2014, The gut microbiota, bacterial metabolites and colorectal cancer. Nature reviews microbiology, 12(10), 661-672.

[11].  Macfarlane, S., & Macfarlane, G. T., 2003, Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67-72.

[12].  Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M., 2004, Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1469-1476.

[13].  Morrison, D. J., & Preston, T., 2016, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189-200.

[14].  Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W., & Bultman, S. J., 2012, The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular cell, 48(4), 612-626.

[15].  Lin, L., & Zhang, J., 2017, Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC immunology, 18, 1-25.

[16].  Martens, J. H., Barg, H., Warren, M. A., & Jahn, D., 2002, Microbial production of vitamin B 12. Applied microbiology and biotechnology, 58, 275-285.

[17].  Staley, C., Weingarden, A. R., Khoruts, A., & Sadowsky, M. J., 2017, Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied microbiology and biotechnology, 101, 47-64.

[18].  Palau-Rodriguez, M., Tulipani, S., Isabel Queipo-Ortuño, M., Urpi-Sarda, M., Tinahones, F. J., & Andres-Lacueva, C., 2015, Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology, 6, 1151.

[19].  Swanson, P. A., Kumar, A., Samarin, S., Vijay-Kumar, M., Kundu, K., Murthy, N., & Neish, A. S., 2011, Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proceedings of the National Academy of Sciences, 108(21), 8803-8808.

[20].  Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N., Belzer, C., Huhtinen, H., & Satokari, R., 2015, Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Applied and environmental microbiology, 81(11), 3655-3662.

[21].  Graziani, F., Pujol, A., Nicoletti, C., Dou, S., Maresca, M., Giardina, T., & Perrier, J., 2016, Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. Journal Of Applied Microbiology, 120(5), 1403-1417.

[22].  Rogier, E. W., Frantz, A. L., Bruno, M. E., & Kaetzel, C. S., 2014, Secretory IgA is concentrated in the outer layer of colonic mucus along with gut bacteria. Pathogens, 3(2), 390-403.

[23].  Hevia, A., Delgado, S., Sánchez, B., & Margolles, A., 2015, Molecular players involved in the interaction between beneficial bacteria and the immune system. Frontiers in microbiology, 6, 1285.

[24].  Ng, K. M., Ferreyra, J. A., Higginbottom, S. K., Lynch, J. B., Kashyap, P. C., Gopinath, S., & Sonnenburg, J. L., 2013, Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 502(7469), 96-99.

[25].  Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., & Cani, P. D., 2013, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the national academy of sciences, 110(22), 9066-9071.

[26].  Zhao, S., Liu, W., Wang, J., Shi, J., Sun, Y., Wang, W., & Hong, J., 2017, Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol, 58(1), 1-14.

[27].  Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N., 2015, Role of the normal gut microbiota. World journal of gastroenterology: WJG, 21(29), 8787.

[28].  Han, R., Ma, J., & Li, H.,2018, Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Frontiers of Medicine, 12, 645-657.

[29].  Suk, K. T., & Kim, D. J.,2019, Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Review of Gastroenterology & Hepatology, 13(3), 193-204.

[30].  Lv, H., Tao, F., Peng, L., Chen, S., Ren, Z., Chen, J., & Wan, C., 2023, In vitro probiotic properties of Bifidobacterium animalis subsp. lactis SF and its alleviating effect on non-alcoholic fatty liver disease. Nutrients, 15(6), 1355.

[31].  Usami, M., Miyoshi, M., & Yamashita, H., 2015, Gut microbiota and host metabolism in liver cirrhosis. World journal of gastroenterology, 21(41), 11597.

[32].  Pushpanathan, P., Mathew, G. S., Selvarajan, S., Seshadri, K. G., & Srikanth, P., 2019, Gut microbiota and its mysteries. Indian Journal of Medical Microbiology, 37(2), 268-277.

[33].  Migliore, L., Nicoli, V., & Stoccoro, A., 2021, Gender specific differences in disease susceptibility: the role of epigenetics. Biomedicines, 9(6), 652.

[34].  Rizzetto, L., Fava, F., Tuohy, K. M., & Selmi, C., 2018, Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. Journal of autoimmunity, 92, 12-34.

[35].  Chang, C. S., & Kao, C. Y., 2019, Current understanding of the gut microbiota shaping mechanisms. Journal of biomedical science, 26(1), 59.

[36].  Langan, D., Rose, N. R., & Moudgil, K. D., 2020, Common innate pathways to autoimmune disease. Clinical Immunology, 212, 108361.

[37].  Neish, A. S., 2009, Microbes in gastrointestinal health and disease. Gastroenterology, 136(1), 65-80.

[38].  Van den Elsen, L. W., Garssen, J., Burcelin, R., & Verhasselt, V., 2019, Shaping the gut microbiota by breastfeeding: the gateway to allergy prevention? Frontiers in pediatrics, 7, 47.

[39].  Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., & Schloter, M., 2020, Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8, 1-22.

[40].  Laterza, L., Rizzatti, G., Gaetani, E., Chiusolo, P., & Gasbarrini, A., 2016, The gut microbiota and immune system relationship in human graft-versus-host disease. Mediterranean Journal of Hematology and Infectious Diseases, 8(1).

[41].  Deo, P. N., & Deshmukh, R., 2019, Oral microbiome: Unveiling the fundamentals. Journal Of Oral and Maxillofacial Pathology, 23(1), 122-128.

[42].  Dickson, R. P., & Huffnagle, G. B., 2015, The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS pathogens, 11(7), e1004923.