Estimation of Fucokinase and Serum Biochemical Markers in Menopause Women

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art023

Authors : Luay A. Al-Helaly, Duaa H. Omar

Abstract:

Fucokinase is involved in the fucosylation of carbohydrates, which are involved in various biological and pathological processes in eukaryotic organisms, such as tissue development, angiogenesis, and fertilization. In our study, FUK in addition to Some enzymes, Hormones, Lipid profiles, oxidants and antioxidants, and other biochemical parameters were measured in serum for (175) women of ages ranging from (18 – 40) years Also, 80 serum samples were collected from women suffering from menopause in the same ages from Mosul city. The results showed that there is a decrease in the FUK, vitamin D, Triglyceride (TG), Very low-density lipoprotein (VLDL), glutathione (GSH) and high levels of alkaline phosphatase (ALP), total bilirubin (TB) and calcium (Ca), Progesterone, Testosterone, low-density lipoprotein (LDL), Atherogenic index and malondialdehyde (MDA) in MP women compared to healthy women. The hormonal changes associated with MP lead to increased liver enzyme levels, indicating a potential risk for liver dysfunction and increased bone turnover, while Ca levels may decline due to decreased estrogen. Total bilirubin and phosphorus levels appear to be less affected. The lipid profile of MP shows significant adverse changes compared to normal premenopausal women. Menopausal women tend to have lower levels of GSH and higher levels of MDA and ONOO-, indicating increased oxidative stress. The comparison of FUK values between MP and healthy women highlights the potential impact of hormonal changes on metabolic pathways. Further research is needed to elucidate the specific mechanisms by which FUK activity is altered in early menopause and to explore the clinical implications of these changes.


References:

[1].   Djahanbakhch, O., Ezzati, M., Zosmer, A., 2007, Reproductive ageing in women. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 211(2), 219-231. doi:10.1002/path.2108.

[2].   Welt, C. K., McNicholl, D. J., Taylor, A. E., Hall, J. E., 1999, Female reproductive ageing is marked by decreased secretion of dimeric inhibin. The Journal of Clinical Endocrinology & Metabolism, 84(1), 105-111. doi:10.1210/jcem.84.1.5381.

[3].   Doshi, S.B., Agarwal, A., 2013, The role of oxidative stress in menopause. Journal of mid-life health, 4(3), 140-146. doi:10.4103/0976-7800.118990.

[4].   Lumsden, M. A., Davies, M., Sarri, G., 2016, Diagnosis and management of menopause: the National Institute of Health and Care Excellence (NICE) guideline. JAMA Internal Medicine, 176(8), 1205-1206. doi:10.1001/jamainternmed.2016.2761.

[5].   Santoro, N., Roeca, C., Peters, B. A., Neal-Perry, G., 2021, The menopause transition: signs, symptoms, and management options. The Journal of Clinical Endocrinology & Metabolism, 106(1), 1-15. doi:10.1210/clinem/dgaa764.

[6].   Vogt, E. C., Real, F. G., Husebye, E. S., Björnsdottir, S., Benediktsdottir, B., Bertelsen, R. J., Øksnes, M., 2022, Premature menopause and autoimmune primary ovarian insufficiency in two international multi-centre cohorts. Endocrine Connections, 11(5). doi:10.1530/EC-22-0024.

[7].   Faubion, S. S., Kuhle, C. L., Shuster, L. T., Rocca, W. A., 2015, Long-term health consequences of premature or early menopause and considerations for management. Climacteric, 18(4), 483-491. doi:10.3109/13697137.2015.1020484.

[8].   Park, S. H., Pastuszak, I., Drake, R., Elbein, A. D., 1998, Purification to Apparent Homogeneity and Properties of Pig Kidneyl-Fucose Kinase. Journal of Biological Chemistry, 273(10), 5685-5691. doi:10.1074/jbc.273.10.5685.

[9].   Wang, Y., Lee, G. F., Kelley, R. F., Spellman, M. W., 1996, Identification of a GDP-L-fucose: polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology, 6(8), 837-842. doi:10.1093/glycob/6.8.837.

[10].  Ma, B., Simala-Grant, J. L., Taylor, D. E., 2006, Fucosylation in prokaryotes and eukaryotes. Glycobiology, 16(12), 158R-184R. doi:10.1093/glycob/cwl040.

[11].  Zhang, N. Z., Zhao, L. F., Zhang, Q., Fang, H., Song, W. L., Li, W. Z., Gao, P., 2023, Core fucosylation and its roles in gastrointestinal glycoimmunology. World Journal of Gastrointestinal Oncology, 15(7), 1119. doi:10.4251/wjgo.v15.i7.1119.

[12].  Kotake, T., Hojo, S., Tajima, N., Matsuoka, K., Koyama, T., Tsumuraya, Y., 2008, A bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase activities salvages free L-fucose in Arabidopsis. Journal of Biological Chemistry, 283(13), 8125-8135. doi:10.1074/jbc.M710078200.

[13].  Fossati, P., Prencipe, L., Berti, G., 1980, Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical chemistry, 26(2), 227-231. doi:10.1093/clinchem/26.2.227.

[14].  Reitman, S., Frankel, S., 1957, A colourimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56-63. doi:10.1093/ajcp/28.1.56.

[15].  Moorehead, W. R., Biggs, H. G., 1974, 2-Amino-2-methyl-1-propanol as the alkalizing agent in an improved continuous-flow cresolphthalein complex one procedure for calcium in serum. Clinical chemistry, 20(11), 1458-1460. doi:10.1093/clinchem/20.11.1458.

[16].  Farukhi, Z., Mora, S., 2018, The future of low-density lipoprotein cholesterol in an era of nonfasting lipid testing and potent low-density lipoprotein lowering. Circulation, 137(1), 20-23. doi:10.1161/CIRCULATIONAHA.117.031857.

[17].  Guidet, B., Shah, S. V., 1989, Enhanced in Vivo H2O2 generation by rat kidney in glycerol-induced renal failure. American Journal of Physiology-Renal Physiology, 257(3), F440-F445. doi:10.1152/ajprenal.1989.257.3.F440.

[18].  VanUffelen, E. B., Van der ZEE, J., de Koster, M. B., VanSteveninck, J., Elferink, G. J., 1998, Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochemical Journal, 330(2), 719-722. doi:10.1042/bj3300719.

[19].  Sedlak, J., Lindsay, R. H., 1968, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25, 192-205.

[20].  Ko, S. H., Jung, Y., 2021, Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients, 13(12), 4556. doi:10.3390/nu13124556.

[21].  Ko, S. H., Kim, H. S., 2020, Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients, 12(1), 202. doi:10.3390/nu12010202.

[22].  Ou, Y. J., Lee, J., Huang, S. P., Chen, S. C., Geng, J. H., Su, C. H., 2023, Association between Menopause, postmenopausal hormone therapy and metabolic syndrome. Journal of Clinical Medicine, 12(13), 4435. doi:10.3390/jcm12134435.

[23].  McCarthy, M., Raval, A. P., 2020, The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. Journal of Neuroinflammation, 17, 1-14. doi:10.1186/s12974-020-01998-9.

[24].  Ortmann, O., Beckermann, M. J., Inwald, E. C., Strowitzki, T., Windler, E., Tempfer, C., Guideline Group., 2020, Peri-and postmenopause—diagnosis and interventions interdisciplinary S3 guideline of the association of the scientific medical societies in Germany (AWMF 015/062): short version. Archives of gynaecology and obstetrics, 302, 763-777. doi:10.1007/s00404-020-05682-4.

[25].  Bhattarai, T., Bhattacharya, K., Chaudhuri, P., Sengupta, P., 2014, Correlation of common biochemical markers for bone turnover, serum calcium, and alkaline phosphatase in post-menopausal women. The Malaysian Journal of Medical Sciences: MJMS, 21(1), 58.

[26].  Pardhe, B D., Pathak, S., Bhetwal, A., Ghimire, S., Shakya, S., Khanal, P. R., Marahatta, S. B., 2017, Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: a population-based study from Nepal. International Journal of Women's Health, 781-788. doi:10.2147/IJWH.S145191.

[27].  Bansal, N., Katz, R., de Boer, I. H., Kestenbaum, B., Siscovick, D. S., Hoofnagle, A. N., Ix, J. H., 2013, Influence of estrogen therapy on calcium, phosphorus, and other regulatory hormones in postmenopausal women: the MESA study. The Journal of Clinical Endocrinology & Metabolism, 98(12), 4890-4898. doi:10.1210/jc.2013-2286.

[28].  Ohta, H., Sugimoto, I., Masuda, A., Komukai, S., Suda, Y., Makita, K., Nozawa, S., 1996, Decreased bone mineral density associated with early menopause progresses for at least ten years: cross-sectional comparisons between early and normal menopausal women. Bone, 18(3), 227-231. doi:10.1016/8756-3282(95)00480-7.

[29].  Penzias, A., Azziz, R., Bendikson, K., Falcone, T., Hansen, K., Hill, M., Young, S., 2021, Diagnosis and treatment of luteal phase deficiency: a committee opinion. Fertility and Sterility, 115(6), 416-423. doi:10.1016/j.fertnstert.2021.02.010.

[30].  Kolcsár, M., Berecki, B., Gáll, Z., 2023, Relationship between Serum 25-Hydroxyvitamin D Levels and Hormonal Status in Infertile Women: A Retrospective Study. Diagnostics, 13(19), 3024. doi:10.3390/diagnostics13193024.

[31].  JI, T., 2009, Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in midlife women: study of Women's Health Across the Nation. Menopause, 16, 257-264. doi:10.1253/circj.CJ-12-0613.

[32].  Kilim, S. R., Chandala, S. R., 2013, A comparative study of lipid profile and oestradiol in pre-and post-menopausal women. Journal Of Clinical and Diagnostic Research: JCDR, 7(8), 1596. doi: 10.7860/JCDR/2013/6162.3234.

[33].  Ambikairajah, A., Walsh, E., Cherbuin, N., 2019, Lipid profile differences during menopause: a review with meta-analysis. Menopause, 26(11), 1327-1333. doi:10.1097/GME.0000000000001403.

[34].  Guo, Q., Zhou, S., Feng, X., Yang, J., Qiao, J., Zhao, Y., Zhou, Y., 2020, The sensibility of the new blood lipid indicator——atherogenic index of plasma (AIP) in menopausal women with coronary artery disease. Lipids in Health and Disease, 19, 1-8. doi:10.1186/s12944-020-01208-8.

[35].  Barua, L., Faruque, M., Banik, P. C., Ali, L., 2019, Atherogenic index of plasma and its association with cardiovascular disease risk factors among postmenopausal rural women of Bangladesh. Indian Heart Journal, 71(2), 155-160. doi:10.1016/j.ihj.2019.04.012.

[36].  Ansar, S., Alhefdhi, T., Aleem, A. M., 2015, Status of trace elements and antioxidants in premenopausal and postmenopausal phase of life: a comparative study. International Journal Of Clinical And Experimental Medicine, 8(10), 19486.

[37].  Pinchuk, I., Weber, D., Kochlik, B., Stuetz, W., Toussaint, O., Debacq-Chainiaux, F., Lichtenberg, D., 2019, Gender-and age-dependencies of oxidative stress, as detected based on the steady-state concentrations of different biomarkers in the MARK-AGE study. Redox Biology, 24, 101204. doi:10.1016/j.redox.2019.101204.

[38].  Cervellati, C., Bergamini, C. M., 2016, Oxidative damage and the pathogenesis of menopause-related disturbances and diseases. Clinical Chemistry and Laboratory Medicine (CCLM), 54(5), 739-753. doi:10.1515/cclm-2015-0807.

[39].  Malekian, S., Mirghafourvand, M., Najafipour, F., Ostadrahimi, A., Ghassab-Abdollahi, N., Farshbaf-Khalili, A., 2023, The associations between bone mineral density and oxidative stress biomarkers in postmenopausal women. Korean Journal of Family Medicine, 44(2), 95. doi:10.4082/kjfm.22.0022.

[40].  Kathak, R. R., Sumon, A. H., Molla, N. H., Hasan, M., Miah, R., Tuba, H. R., Ali, N., 2022, The association between elevated lipid profile and liver enzymes: a study on Bangladeshi adults. Scientific reports, 12(1), 1711. doi:10.1038/s41598-022-05766-y.

[41].  Islam, S., Rahman, S., Haque, T., Sumon, A. H., Ahmed, A. M., Ali, N., 2020, Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross‐sectional study in Bangladeshi adults. Endocrinology, diabetes & metabolism, 3(2), e00116. doi:10.1002/edm2.116.