Estimation of Fucokinase and Serum Biochemical Markers in Menopause Women

Abstract:
Fucokinase is involved in the
fucosylation of carbohydrates, which are involved in various biological and
pathological processes in eukaryotic organisms, such as tissue development,
angiogenesis, and fertilization. In our study, FUK in addition to Some enzymes,
Hormones, Lipid profiles, oxidants and antioxidants, and other biochemical
parameters were measured in serum for (175) women of ages ranging from (18 –
40) years Also, 80 serum samples were collected from women suffering from
menopause in the same ages from Mosul city. The results showed that there is a
decrease in the FUK, vitamin D, Triglyceride (TG), Very low-density lipoprotein
(VLDL), glutathione (GSH) and high levels of alkaline phosphatase (ALP), total
bilirubin (TB) and calcium (Ca), Progesterone, Testosterone, low-density
lipoprotein (LDL), Atherogenic index and malondialdehyde (MDA) in MP women
compared to healthy women. The hormonal changes associated with MP lead to
increased liver enzyme levels, indicating a potential risk for liver
dysfunction and increased bone turnover, while Ca levels may decline due to
decreased estrogen. Total bilirubin and phosphorus levels appear to be less
affected. The lipid profile of MP shows significant adverse changes compared to
normal premenopausal women. Menopausal women tend to have lower levels of GSH
and higher levels of MDA and ONOO-, indicating increased oxidative stress. The
comparison of FUK values between MP and healthy women highlights the potential
impact of hormonal changes on metabolic pathways. Further research is needed to
elucidate the specific mechanisms by which FUK activity is altered in early
menopause and to explore the clinical implications of these changes.
References:
[1].
Djahanbakhch, O., Ezzati, M., Zosmer, A.,
2007, Reproductive ageing in women. The Journal of Pathology: A Journal of
the Pathological Society of Great Britain and Ireland, 211(2), 219-231. doi:10.1002/path.2108.
[2].
Welt, C. K., McNicholl, D. J., Taylor, A. E.,
Hall, J. E., 1999, Female reproductive ageing is marked by decreased secretion
of dimeric inhibin. The Journal of Clinical Endocrinology & Metabolism,
84(1), 105-111. doi:10.1210/jcem.84.1.5381.
[3].
Doshi, S.B., Agarwal, A., 2013, The role
of oxidative stress in menopause. Journal of mid-life health, 4(3),
140-146. doi:10.4103/0976-7800.118990.
[4].
Lumsden, M. A., Davies, M., Sarri, G.,
2016, Diagnosis and management of menopause: the National Institute of Health
and Care Excellence (NICE) guideline. JAMA Internal Medicine, 176(8),
1205-1206. doi:10.1001/jamainternmed.2016.2761.
[5].
Santoro, N., Roeca, C., Peters, B. A.,
Neal-Perry, G., 2021, The menopause transition: signs, symptoms, and management
options. The Journal of Clinical Endocrinology & Metabolism, 106(1),
1-15. doi:10.1210/clinem/dgaa764.
[6].
Vogt, E. C., Real, F. G., Husebye, E. S.,
Björnsdottir, S., Benediktsdottir, B., Bertelsen, R. J., Øksnes, M., 2022,
Premature menopause and autoimmune primary ovarian insufficiency in two
international multi-centre cohorts. Endocrine Connections, 11(5). doi:10.1530/EC-22-0024.
[7].
Faubion, S. S., Kuhle, C. L., Shuster, L. T.,
Rocca, W. A., 2015, Long-term health consequences of premature or early
menopause and considerations for management. Climacteric, 18(4), 483-491. doi:10.3109/13697137.2015.1020484.
[8].
Park, S. H., Pastuszak, I., Drake, R., Elbein,
A. D., 1998, Purification to Apparent Homogeneity and Properties of Pig
Kidneyl-Fucose Kinase. Journal of Biological Chemistry, 273(10),
5685-5691. doi:10.1074/jbc.273.10.5685.
[9].
Wang, Y., Lee, G. F., Kelley, R. F.,
Spellman, M. W., 1996, Identification of a GDP-L-fucose: polypeptide
fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains.
Glycobiology, 6(8), 837-842. doi:10.1093/glycob/6.8.837.
[10]. Ma, B.,
Simala-Grant, J. L., Taylor, D. E., 2006, Fucosylation in prokaryotes and
eukaryotes. Glycobiology, 16(12), 158R-184R. doi:10.1093/glycob/cwl040.
[11]. Zhang,
N. Z., Zhao, L. F., Zhang, Q., Fang, H., Song, W. L., Li, W. Z., Gao, P., 2023,
Core fucosylation and its roles in gastrointestinal glycoimmunology. World
Journal of Gastrointestinal Oncology, 15(7), 1119. doi:10.4251/wjgo.v15.i7.1119.
[12]. Kotake,
T., Hojo, S., Tajima, N., Matsuoka, K., Koyama, T., Tsumuraya, Y., 2008, A
bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase
activities salvages free L-fucose in Arabidopsis. Journal of Biological
Chemistry, 283(13), 8125-8135. doi:10.1074/jbc.M710078200.
[13]. Fossati,
P., Prencipe, L., Berti, G., 1980, Use of 3,
5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in
direct enzymic assay of uric acid in serum and urine. Clinical chemistry,
26(2), 227-231. doi:10.1093/clinchem/26.2.227.
[14]. Reitman,
S., Frankel, S., 1957, A colourimetric method for the determination of serum
glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of
Clinical Pathology, 28(1), 56-63. doi:10.1093/ajcp/28.1.56.
[15]. Moorehead,
W. R., Biggs, H. G., 1974, 2-Amino-2-methyl-1-propanol as the alkalizing agent
in an improved continuous-flow cresolphthalein complex one procedure for
calcium in serum. Clinical chemistry, 20(11), 1458-1460. doi:10.1093/clinchem/20.11.1458.
[16]. Farukhi,
Z., Mora, S., 2018, The future of low-density lipoprotein cholesterol in an era
of nonfasting lipid testing and potent low-density lipoprotein lowering.
Circulation, 137(1), 20-23. doi:10.1161/CIRCULATIONAHA.117.031857.
[17]. Guidet,
B., Shah, S. V., 1989, Enhanced in Vivo H2O2 generation by rat kidney in
glycerol-induced renal failure. American Journal of Physiology-Renal
Physiology, 257(3), F440-F445. doi:10.1152/ajprenal.1989.257.3.F440.
[18]. VanUffelen,
E. B., Van der ZEE, J., de Koster, M. B., VanSteveninck, J., Elferink, G. J.,
1998, Intracellular but not extracellular conversion of nitroxyl anion into
nitric oxide leads to stimulation of human neutrophil migration. Biochemical
Journal, 330(2), 719-722. doi:10.1042/bj3300719.
[19]. Sedlak,
J., Lindsay, R. H., 1968, Estimation of total, protein-bound, and nonprotein
sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry,
25, 192-205.
[20]. Ko, S. H.,
Jung, Y., 2021, Energy metabolism changes and dysregulated lipid metabolism in
postmenopausal women. Nutrients, 13(12), 4556. doi:10.3390/nu13124556.
[21]. Ko, S. H.,
Kim, H. S., 2020, Menopause-associated lipid metabolic disorders and foods
beneficial for postmenopausal women. Nutrients, 12(1), 202. doi:10.3390/nu12010202.
[22]. Ou, Y. J.,
Lee, J., Huang, S. P., Chen, S. C., Geng, J. H., Su, C. H., 2023, Association
between Menopause, postmenopausal hormone therapy and metabolic syndrome. Journal
of Clinical Medicine, 12(13), 4435. doi:10.3390/jcm12134435.
[23]. McCarthy,
M., Raval, A. P., 2020, The peri-menopause in a woman's life: a systemic
inflammatory phase that enables later neurodegenerative disease. Journal of
Neuroinflammation, 17, 1-14. doi:10.1186/s12974-020-01998-9.
[24]. Ortmann,
O., Beckermann, M. J., Inwald, E. C., Strowitzki, T., Windler, E., Tempfer, C.,
Guideline Group., 2020, Peri-and postmenopause—diagnosis and interventions
interdisciplinary S3 guideline of the association of the scientific medical
societies in Germany (AWMF 015/062): short version. Archives of gynaecology and
obstetrics, 302, 763-777. doi:10.1007/s00404-020-05682-4.
[25]. Bhattarai,
T., Bhattacharya, K., Chaudhuri, P., Sengupta, P., 2014, Correlation of common
biochemical markers for bone turnover, serum calcium, and alkaline phosphatase
in post-menopausal women. The Malaysian Journal of Medical Sciences:
MJMS, 21(1), 58.
[26]. Pardhe,
B D., Pathak, S., Bhetwal, A., Ghimire, S., Shakya, S., Khanal, P. R., Marahatta,
S. B., 2017, Effect of age and estrogen on biochemical markers of bone turnover
in postmenopausal women: a population-based study from Nepal. International
Journal of Women's Health, 781-788. doi:10.2147/IJWH.S145191.
[27]. Bansal,
N., Katz, R., de Boer, I. H., Kestenbaum, B., Siscovick, D. S., Hoofnagle, A. N.,
Ix, J. H., 2013, Influence of estrogen therapy on calcium, phosphorus, and
other regulatory hormones in postmenopausal women: the MESA study. The
Journal of Clinical Endocrinology & Metabolism, 98(12), 4890-4898. doi:10.1210/jc.2013-2286.
[28]. Ohta,
H., Sugimoto, I., Masuda, A., Komukai, S., Suda, Y., Makita, K., Nozawa, S.,
1996, Decreased bone mineral density associated with early menopause progresses
for at least ten years: cross-sectional comparisons between early and normal
menopausal women. Bone, 18(3), 227-231. doi:10.1016/8756-3282(95)00480-7.
[29]. Penzias,
A., Azziz, R., Bendikson, K., Falcone, T., Hansen, K., Hill, M., Young, S.,
2021, Diagnosis and treatment of luteal phase deficiency: a committee opinion.
Fertility and Sterility, 115(6), 416-423. doi:10.1016/j.fertnstert.2021.02.010.
[30]. Kolcsár,
M., Berecki, B., Gáll, Z., 2023, Relationship between Serum 25-Hydroxyvitamin D
Levels and Hormonal Status in Infertile Women: A Retrospective Study.
Diagnostics, 13(19), 3024. doi:10.3390/diagnostics13193024.
[31]. JI, T.,
2009, Relative androgen excess during the menopausal transition predicts
incident metabolic syndrome in midlife women: study of Women's Health Across
the Nation. Menopause, 16, 257-264. doi:10.1253/circj.CJ-12-0613.
[32]. Kilim, S.
R., Chandala, S. R., 2013, A comparative study of lipid profile and oestradiol
in pre-and post-menopausal women. Journal Of Clinical and Diagnostic
Research: JCDR, 7(8), 1596. doi: 10.7860/JCDR/2013/6162.3234.
[33]. Ambikairajah,
A., Walsh, E., Cherbuin, N., 2019, Lipid profile differences during menopause:
a review with meta-analysis. Menopause, 26(11), 1327-1333. doi:10.1097/GME.0000000000001403.
[34]. Guo,
Q., Zhou, S., Feng, X., Yang, J., Qiao, J., Zhao, Y., Zhou, Y., 2020, The
sensibility of the new blood lipid indicator——atherogenic index of plasma (AIP)
in menopausal women with coronary artery disease. Lipids in Health and Disease,
19, 1-8. doi:10.1186/s12944-020-01208-8.
[35]. Barua,
L., Faruque, M., Banik, P. C., Ali, L., 2019, Atherogenic index of plasma and
its association with cardiovascular disease risk factors among postmenopausal
rural women of Bangladesh. Indian Heart Journal, 71(2), 155-160. doi:10.1016/j.ihj.2019.04.012.
[36]. Ansar,
S., Alhefdhi, T., Aleem, A. M., 2015, Status of trace elements and antioxidants
in premenopausal and postmenopausal phase of life: a comparative study. International
Journal Of Clinical And Experimental Medicine, 8(10), 19486.
[37]. Pinchuk,
I., Weber, D., Kochlik, B., Stuetz, W., Toussaint, O., Debacq-Chainiaux, F.,
Lichtenberg, D., 2019, Gender-and age-dependencies of oxidative stress, as
detected based on the steady-state concentrations of different biomarkers in
the MARK-AGE study. Redox Biology, 24, 101204. doi:10.1016/j.redox.2019.101204.
[38]. Cervellati,
C., Bergamini, C. M., 2016, Oxidative damage and the pathogenesis of
menopause-related disturbances and diseases. Clinical Chemistry and Laboratory
Medicine (CCLM), 54(5), 739-753. doi:10.1515/cclm-2015-0807.
[39]. Malekian,
S., Mirghafourvand, M., Najafipour, F., Ostadrahimi, A., Ghassab-Abdollahi, N.,
Farshbaf-Khalili, A., 2023, The associations between bone mineral density and
oxidative stress biomarkers in postmenopausal women. Korean Journal of
Family Medicine, 44(2), 95. doi:10.4082/kjfm.22.0022.
[40]. Kathak,
R. R., Sumon, A. H., Molla, N. H., Hasan, M., Miah, R., Tuba, H. R., Ali, N.,
2022, The association between elevated lipid profile and liver enzymes: a study
on Bangladeshi adults. Scientific reports, 12(1), 1711. doi:10.1038/s41598-022-05766-y.
[41]. Islam, S., Rahman, S., Haque, T., Sumon, A. H., Ahmed, A. M., Ali, N., 2020, Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross‐sectional study in Bangladeshi adults. Endocrinology, diabetes & metabolism, 3(2), e00116. doi:10.1002/edm2.116.