Targeting Wound Pathogens with Madhuca indica Bioactive Compounds: An In Silico Perspective

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art017

Authors : Mukesh Kumar Dharmalingam Jothinathan, Iadalin Ryntathiang, Archana Behera, Suma Sukumaran, Vasundhara Chandirasekar, Saantosh Saravanan, Monisha Prasad

Abstract:

Treating wound infections is increasingly challenging because of bacterial antibiotic resistance. Plants have recently emerged as a viable strategy for addressing antibiotic resistance and enhancing wound care. The antioxidant activity of Madhuca indica is essential for preventing oxidative stress by free radicals. In silico analysis of the bioactive compound was done by DPPH and the prominent phytochemicals were found in the extract after phytochemical screening. Phytochemical analysis of M. indica revealed that the plant contains flavonoids among many other bioactive compounds. M. indica exhibits concentration dependent radical scavenging activity, according to the DPPH test, where the percentage of radicals inhibited rises with concentrations as 10-50 µg/mL. The antimicrobial resistance patterns of bacterial targets were studied to elucidate the potential of M. indica compounds in combating these resistant strains. Multidrug resistance may be treated as the structural modification of the identified compounds, which may increase their efficiency and selectivity against the target microorganisms. Compounds from M. indica can also be added to already approved antibiotics; these combinations have synergistic effects that can help address the resistance issue. The activity indicated strong free radical scavenging activity that might help fight oxidative stress and aid in wound healing. The result of such computational predictions needs to be further studied in silico to validate the therapeutic application of several identified drugs. These possibilities suggest that novel antimicrobial agents derived from plants may be able to address the ongoing issue of multidrug resistance.


References:

[1].   Chandar, B. and Bhattacharya, D., 2019. Role of natural product in modulation of drug transporters and New Delhi metallo-β lactamases. Current Topics in Medicinal Chemistry, 19(10),874-885. https://doi.org/10.2174/1871529X19666190415110724

[2].   Talukdar, D., Kumar, P., Sharma, D., Balaramnavar, V. M., Afzal, O., Altamimi, A. S. A., Kazmi, I., Al-Abbasi, F. A., Alzarea, S. I., Gupta, G. and Gupta, M. M., 2023. Anticancer phytochemical-based nanoformulations: therapeutic intervention in cancer cell lines. Journal of Environmental Pathology, Toxicology and Oncology, 42(1),79-93. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022044317

[3].   Rather, M. A., Deori, P. J., Gupta, K., Daimary, N., Deka, D., Qureshi, A., Dutta, T. K., Joardar, S. N. and Mandal, M., 2022. Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Chemosphere, 300,134497. https://doi.org/10.1016/j.chemosphere.2022.134497

[4].   Smith, R. M., Lautenbach, E., Omulo, S., Araos, R., Call, D. R., Kumar, G. C., Chowdhury, F., McDonald, C. L. and Park, B. J., 2021, November. Human colonization with multidrug-resistant organisms: getting to the bottom of antibiotic resistance. In Open Forum Infectious Diseases, 8(11), 531. https://doi.org/10.1093/ofid/ofab531

[5].   Alsaab, S. M., Alotaibi, S. K., Bhaskaran, P. M. and Domnic, I. S., 2024. Prevalence of Multidrug Resistant Organisms (MDROs) and Antimicrobial Sensitivity Pattern from clinical samples of the patients in Riyadh Province of the Kingdom of Saudi Arabia. Pharmacognosy Journal, 16(4), 102-117. https://doi.org/10.5530/pj.2024.16.125

[6].   AlRawashdeh, M. M., Ishak, A., Al-Bunnia, A., Agouridis, A. P., Lytras, T., Spernovasilis, N. and Tsioutis, C., 2024. Patient Experiences and Perceptions with Infections Due to Multidrug-Resistant Organisms: A Systematic Review. Pathogens, 13(9),817. https://doi.org/10.3390/pathogens13090817

[7].   Ryntathiang, I., Behera, A., Richard, T. and Jothinathan, M. K. D., 2024. An Assessment of the In Vitro Antioxidant Activity of Cobalt Nanoparticles Synthesized from Millettia pinnata, Butea monosperma, and Madhuca indica Extracts: A Comparative Study. Cureus, 16(4),e59112. https://doi.org/10.7759/cureus.59112

[8].   Balasubramanian, S. and Venkatachalam, P., 2022. Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals. Cellulose, 29(3),1509-1526. https://doi.org/10.1007/s10570-022-04419-7

[9].   Habeeb Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Thangavelu, S. and Muthupandian, S., 2022. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology, 16(4),115-144. https://doi.org/10.1049/nbt2.12078

[10]. Moteriya, P., Padalia, H., Rathod, T., Desai, D. and Chanda, S., 2015. Pharmacognostic standardization of Madhuca indica leaf and stem, an important medicinal plant. International Journal of Pharmaceutical Sciences and Research, 6(2),705. k: http://doi.org/10.13040/IJPSR.0975-8232.6(2).705-11

[11]. Pacyga, K., Pacyga, P., Topola, E., Viscardi, S. and Duda-Madej, A., 2024. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. International Journal of Molecular Sciences, 25(4),2100. https://doi.org/10.3390/ijms25042100

[12]. Suvaithenamudhan, S., Ananth, S., Mariappan, V., Dhayabaran, V. V., Parthasarathy, S., Ganesh, P.S. and Shankar, E. M., 2022. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules, 27(16),5188. https://doi.org/10.3390/molecules27165188

[13]. Aouf, A., Bouaouina, S., Abdelgawad, M. A., Abourehab, M. A. and Farouk, A., 2022. In silico study for Algerian essential oils as antimicrobial agents against multidrug-resistant bacteria isolated from pus samples. Antibiotics, 11(10),1317. https://doi.org/10.3390/antibiotics11101317

[14]. Fatma, A., Ahuja, V., Ahuja, A., Kumar, S., Srivastava, S. K. and Thosar, N. R., 2024. Evaluation of Antibacterial Activity of Madhuca longifolia (Mahua) Stem Extract Against Streptococcus mutans: An In Vitro Study. Cureus, 16(1), e52210. https://doi.org/10.7759/cureus.52210

[15]. Mondal, S. and Rai, V. R., 2021. Molecular profiling and anti-infective potency of endophytic actinomycetes inhabiting Madhuca insignis Radlk., from Western Ghats of India. Journal of Genetic Engineering and Biotechnology, 19(1),36. https://doi.org/10.1186/s43141-021-00135-0

[16]. Verma, S. K., Gond, S. K., Mishra, A., Sharma, V. K., Kumar, J., Singh, D. K., Kumar, A., Goutam, J. and Kharwar, R. N., 2014. Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Annals of Microbiology, 64,721-734. https://doi.org/10.1007/s13213-013-0707-9

[17]. Rakesh, B., Srinatha, N., KJ, R. K., Madhu, A., MR, S. K. and Praveen, N., 2022. Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and in vitro leaf-derived callus extracts of Mucuna pruriens (L.) DC. South African Journal of Botany, 148,251-258. https://doi.org/10.1016/j.sajb.2022.04.047

[18]. Khan, M. H. and Ramalingam, K., 2019. Synthesis of antimicrobial nanoemulsions and its effectuality for the treatment of multi-drug resistant ESKAPE pathogens. Biocatalysis and agricultural biotechnology, 18,101025. https://doi.org/10.1016/j.bcab.2019.101025

[19]. Perumal Samy, R., Manikandan, J. and Al Qahtani, M., 2013. Evaluation of aromatic plants and compounds used to fight multidrug resistant infections. Evidence‐Based Complementary and Alternative Medicine2013(1), p.525613. https://doi.org/10.1155/2013/525613

[20]. Behera, A., Jothinathan, M. K. D., Ryntathiang, I., Saravanan, S. and Murugan, R., 2024. Comparative Antioxidant Efficacy of Green-Synthesised Selenium Nanoparticles from Pongamia pinnata, Citrus sinensis, and Acacia auriculiformis: An In Vitro Analysis. Cureus16(4), e58439. https://doi.org/10.7759/cureus.58439

[21]. Lamba, N., Adhikari, S., Modak, J. M. and Madras, G., 2018. Catalytic synthesis of fatty acid methyl esters from Madhuca indica oil in supercritical methanol. Energy Conversion and Management, 173,412-425. https://doi.org/10.1016/j.enconman.2018.07.067

[22]. Okoduwa, S I., Abdulwaliyu, I., Igiri, B. E., Arekemase, S. O., Okoduwa, U. J., Itiat, J. F., Egbule, M. N. and Mustapha, R. A., 2024. Multi-therapeutic potential of flavonoids as an essential component in nutraceuticals for the treatment and management of human diseases. Phytomedicine Plus, 4(2),100558. https://doi.org/10.1016/j.phyplu.2024.100558

[23]. Goel, M., Sharma, A. and Sharma, B., 2023. Recent advances in biogenic silver nanoparticles for their biomedical applications. Sustainable Chemistry, 4(1),61-94. https://doi.org/10.3390/suschem4010007

[24]. Vishwakarma, A., Yadav, H., Lakra, P., Sulakhiya, K., Paliwal, R. and Maiti, S., 2024. Madhuca indica oil-entrapped buoyant galactomannan hydrogel microspheres for controlling epileptic seizures. International Journal of Biological Macromolecules, 272(1),132739. https://doi.org/10.1016/j.ijbiomac.2024.132739

[25]. Halder, G., Dhawane, S. H., Dutta, D., Dey, S., Banerjee, S., Mukherjee, S. and Mondal, M., 2016. Computational simulation and statistical analysis of bioethanol production from Madhuca indica by batch fermentation process using Saccharomyces cerevisiae. Sustainable Energy Technologies and Assessments, 18,16-33. https://doi.org/10.1016/j.seta.2016.09.004

[26]. Saravanan, K., Alarfaj, A. A., Hirad, A. H., Ravindran, B. and Narasimhamoorthi, S. P., 2023. Anti-bacterial and in silico analysis of biogenic fabrication of CuO nanoparticles employing Coleus amboinicus leaf extract. Biomass Conversion and Biorefinery, 13,1-13. https://doi.org/10.1007/s13399-023-05009-8

[27]. Velayutham, N. K., Thamaraikani, T., Wahab, S., Khalid, M., Ramachawolran, G., Abullais, S. S., Wong, L. S., Sekar, M., Gan, S. H., Ebenezer, A. J. and Ravikumar, M., 2023. Stylopine: A potential natural metabolite to block vascular endothelial growth factor receptor 2 (VEGFR2) in osteosarcoma therapy. Frontiers in Pharmacology, 14,1150270. https://doi.org/10.3389/fphar.2023.1150270