Aspergillus flavus Mediated Extracellular One-pot Synthesis of Zirconium and Titanium Oxide Nanoparticles and their Antioxidant and Anti-inflammatory Efficacy Study

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art015

Authors : Anitha Roy, Akshay K., Ramanathan Snega

Abstract:

The present study reports the extracellular one-pot synthesis of zirconium and titanium oxide nanoparticles (Zr/TiO-NPs) mediated by Aspergillus flavus. This green synthesis approach leverages the bio-reductive capabilities of fungal metabolites, providing an environmentally friendly and efficient method for nanoparticle  synthesis . The synthesized nanoparticles were evaluated for their antioxidant and anti-inflammatory activities. Antioxidant activity, assessed at varying concentrations (20–80 µg/ml), demonstrated a concentration-dependent manner , with the highest activity observed at 80 µg/ml. Similarly, the anti-inflammatory efficacy, determined using the albumin denaturation method, revealed maximum activity at 100 µg/ml and the lowest at 20 µg/ml, highlighting their potential to mitigate inflammatory responses. These findings underscore the potential of Aspergillus flavus Zr/TiO-NPs as promising agents for biomedical applications, particularly in combating oxidative stress and inflammation.


References:

[1].   Krishnaswamy, K., Orsat, V., 2017, Sustainable delivery systems through green nanotechnology. In Nano-and microscale drug delivery systems Elsevier. (PP 17-32). https://doi.org/10.1016/B978-0-323-52727-9.00002-9

[2].   Karthiga, P., Ponnanikajamideen, M., Samuel Rajendran, R., Annadurai, G., Rajeshkumar, S., 2019, Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Daniorerio. Drug & Chemical Toxicology, 42(1).https://doi.org/10.1080/01480545.2018.1523186

[3].   Aleem, A. R., Shahzadi, L., Nasir, M., Hajivand, P., Alvi, F., Akhtar, A., Yar, M., 2022, Developing sulfur‐doped titanium oxide nanoparticles loaded chitosan/cellulose‐based proangiogenic dressings for chronic ulcer and burn wounds healing. Journal of Biomedical Materials Research Part B: Applied Biomaterials110(5), 1069-1081.https://doi.org/10.1002/jbm.b.34981

[4].   Fouda, A., Awad, M. A., Al-Faifi, Z. E., Gad, M. E., Al-Khalaf, A. A., Yahya, R., Hamza, M. F., 2022, Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts12(5), 462. https://doi.org/10.3390/catal12050462

[5].   Shravani, V. P., Sundari, S. K., Jeyachandran, S., Nagesh, S., 2023, Green synthesis and characterization of Xanthium strumarium-mediated titanium dioxide nanoparticles. Cureus15(12). https://doi.org/10.7759/cureus.51012.

[6].   Veerabhadraswamy, B. N., Pradeep, H. K., Swaroop, K., Manoj, K. M., Nadigar, M. D., Patel, M. A., Bhagya, N. P., 2024, Green synthesis and characterization of Zirconium Oxide with antimicrobial activities. In IOP Conference Series: Materials Science and Engineering (Vol. 1300, No. 1, p. 012036). IOP Publishing. doi:10.1088/1757-899X/1300/1/012036

[7].   Majedi, A., Abbasi, A., &Davar, F., 2016, Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. Journal of Sol-Gel Science and Technology77, 542-552. doi:10.1007/s10971-015-3881-3

[8].   Swathi, N., Sandhiya, D., Rajeshkumar, S., Lakshmi, T., 2019, Green synthesis of titanium dioxide nanoparticles using Cassia fistula and its antibacterial activity. Int. J. Res. Pharm. Sci10(2), 856-860. doi:10.26452/ijrps.v10i2.261

[9].   Al-Soub, A., Khleifat, K., Al-Tarawneh, A., Al-Limoun, M., Alfarrayeh, I., Al Sarayreh, A., Albashaireh, A., 2022, Silver nanoparticles biosynthesis using an airborne fungal isolate, Aspergillus flavus: optimization, characterization and antibacterial activity. Iranian Journal of Microbiology14(4), 518. doi: 10.18502/ijm.v14i4.10238.

[10].  Dhar, S. A., Chowdhury, R. A., Das, S., Nahian, M. K., Islam, D., Gafur, M. A., 2021, Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthusemblica fruit extract. Materials Today: Proceedings42, 1867-1871. doi:10.1016/j.matpr.2020.12.222.

[11].  HabeebRahman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Muthupandian, S., 2022, Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology16(4), 115-144. https://doi.org/10.1049/nbt2.12078.

[12].  Al-Zaqri, N., Muthuvel, A., Jothibas, M., Alsalme, A., Alharthi, F. A., Mohana, V., 2021, Biosynthesis of zirconium oxide nanoparticles using Wrightiatinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities. Inorganic Chemistry Communications127, 108507. https://doi.org/10.1016/j.inoche.2021.108507

[13].  Aravind, M., Ramanathan, M., Mary, M. S. M., 2021, Synthesis of TiO 2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Applied Sciences3, 1-10.https://doi.org/10.1007/s42452-021-04281-5.

[14].  Putluru, S., Snega, R., Sravanthy, P. G., Saravanan, M., 2024, One-Pot Synthesis of Silver/Zirconium Nanoparticles Using Sargassumtenerrimum for the Evaluation of Their Antibacterial and Antioxidant Activities. Cureus16(6), e61779. https://doi.org/10.7759/cureus.61779.

[15].  Mohammed, E. J., Abdelaziz, A. E., Mekky, A. E., Mahmoud, N. N., Sharaf, M., Al-Habibi, M. M., Shoun, A. A., 2024, Biomedical Promise of Aspergillus Flavus-Biosynthesized Selenium Nanoparticles: A Green Synthesis Approach to Antiviral, Anticancer, Anti-Biofilm, and Antibacterial Applications. Pharmaceuticals17(7), 915. doi:10.3390/ph17070915

[16] Degola, F., Marzouk, B., Gori, A., Brunetti, C., Dramis, L., Gelati, S., Restivo, F. M., 2019, Aspergillus flavus as a model system to test the biological activity of botanicals: An example on CitrulluscolocynthisL. schrad. organic extracts. Toxins11(5), 286.doi: 10.3390/toxins11050286.