A Novel Study Elucidating the Effects of Glucose and Static Magnetic Field on Osteoblast Differentiation Markers

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art011

Authors : Bharathi Selvaraj, Dhanraj Ganapathy

Abstract:

In this study, we explored the expression dynamics of osteoblast differentiation marker genes under the influence of static magnetic fields (SMF) in high glucose conditions. High glucose can significantly impair osteoblast function and differentiation- particularly in diabetic patients with persistent hyperglycemia. In the in-vivo diabetic-like environment that is under glucose level, SMF’s role in bone formation was evaluated using Human osteoblastic cells that were treated with SMF for up to 7 days. The expression of key osteogenic markers such as alkaline phosphatase (ALP), osteocalcin (OCN), and collagen type I (COL1A1) was analysed using qRT-PCR and ELISA. The findings demonstrated that high glucose led to pronounced inhibition of osteoblast differentiation markers. Conversely, being exposed to an SMF dramatically increases the expression of markers for osteoblast differentiation. Additionally, the inhibitory effects of glucose on osteoblast development appear to be lessened upon SMF exposure. These results emphasize the significance of taking into account the positive effects of SMF, which may have therapeutic potential in bone repair.


References:

[1].   Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W., Xu, H., 2022, Trends in insulin resistance: insights into mechanisms and therapeutic strategy, Signal Transduct Target Ther, vol. 7, no. 1, p. 216.

[2].   Bao, K., Jiao, Y., Xing, L., Zhang, F., Tian, F., 2023, The role of Wnt signaling in diabetes‐induced osteoporosis, Diabetol Metab Syndr, vol. 15, no. 1, p. 84.

[3].   Ross, B. J., Lee, O. C., Harris, M. B., Dowd, T. C., Savoie, F. H. 3rd, Sherman, W. F., 2022, The impact of diabetes on osteoporosis management and secondary fracture risk after primary fragility fractures: a propensity score-matched cohort study, J Am Acad Orthop Surg, vol. 30, no. 2, p. e204–12.

[4].   de Paula, F. J. A., Horowitz, M. C., Rosen, C. J., 2010, Novel insights into the relationship between diabetes and osteoporosis, Diabetes Metab Res Rev, vol. 26, no. 8, p. 622–30.

[5].   Gil-Díaz, M. C., Raynor, J., O’Brien, K. O., Schwartz, G. J., Weber, D. R., 2019, Systematic review: associations of calcium intake, vitamin D intake, and physical activity with skeletal outcomes in people with type 1 diabetes mellitus, Acta Diabetol, vol. 56, no. 10, p. 1091–102.

[6].   Yang, J., Ma, C., Zhang, M., 2019, High glucose inhibits osteogenic differentiation and proliferation of MC3T3‑E1 cells by regulating P2X7, Mol Med Rep, vol. 20, no. 6, p. 5084–90.

[7].   Zhang, J., Ding, C., Ren, L., Zhou, Y., Shang, P., 2014, The effects of static magnetic fields on bone, Prog Biophys Mol Biol, vol. 114, no. 3, p. 146–52.

[8].   Yang, T. C., Maeda, Y., Gonda, T., Wada, M., 2013, Magnetic attachment for implant overdentures: influence of contact relationship with the denture base on stability and bending strain, Int J Prosthodont, vol. 26, no. 6, p. 563–5.

[9].   Aksu, A. E., Dursun, E., Calis, M., Ersu, B., Safak, T., Tözüm, T. F., 2014, Intraoral use of extraoral implants for oral rehabilitation of a pediatric patient after resection of Ewing sarcoma of the mandible and reconstruction with iliac osteocutaneous free flap, J Craniofac Surg, vol. 25, no. 3, p. 930–3.

[10].  Siadat, H., Bassir, S. H., Alikhasi, M., Shayesteh, Y. S., Khojasteh, A., Monzavi, A., 2012, Effect of static magnetic fields on the osseointegration of immediately placed implants: a randomized controlled clinical trial, Implant Dent, vol. 21, no. 6, p. 491–5.

[11].  Leesungbok, R., Ahn, S. J., Lee, S. W., Park, G. H., Kang, J. S., Choi, J. J., 2013, The effects of a static magnetic field on bone formation around a sandblasted, large-grit, acid-etched–treated titanium implant, J Oral Implantol, vol. 39, no. S1, p. 248–55.

[12].  Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., et al., 2020, The interplay between bone and glucose metabolism, Front Endocrinol, vol. 11, p. 122.

[13].  Song, F., Lee, W. D., Marmo, T., Ji, X., Song, C., Liao, X., et al., 2023, Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic mice, bioRxiv, p. 10.1101/2023.01.16.524248.

[14].  Mannucci, E., Monami, M., 2017, Bone fractures with sodium-glucose co-transporter-2 inhibitors: how real is the risk?, Drug Saf, vol. 40, no. 2, p. 115–9.

[15].  Tang, H. L., Li, D. D., Zhang, J. J., Hsu, Y. H., Wang, T. S., Zhai, S. D., et al., 2016, Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials, Diabetes Obes Metab, vol. 18, no. 12, p. 1199–206.

[16].  Lv, H., Wang, Y., Zhen, C., Liu, J., Chen, X., Zhang, G., et al., 2023, A static magnetic field improves bone quality and balances the function of bone cells with regulation on iron metabolism and redox status in type 1 diabetes, FASEB J, vol. 37, no. 7, p. e22985.

[17].  Vimalraj, S., Sekaran, S., 2023, RUNX family as a promising biomarker and a therapeutic target in bone cancers: a review on its molecular mechanisms behind tumorigenesis, Cancers, vol. 15, no. 12, p. 3247.

[18].  Jonason, J. H., Xiao, G., Zhang, M., Xing, L., Chen, D., 2009, Post-translational regulation of Runx2 in bone and cartilage, J Dent Res, vol. 88, no. 8, p. 693–703.

[19].  Sekaran, S., Vimalraj, S., Thangavelu, L., 2021, The physiological and pathological role of tissue nonspecific alkaline phosphatase beyond mineralization, Biomolecules, vol. 11, no. 11.

[20].  Amirrah, I. N., Lokanathan, Y., Zulkiflee, I., Wee, M. F. M. R., Motta, A., Fauzi, M. B., 2022, A comprehensive review on collagen type I development of biomaterials for tissue engineering: from biosynthesis to bioscaffold, Biomedicines, vol. 10, no. 9.

[21].  Selvaraj, V., Sekaran, S., Dhanasekaran, A., Warrier, S., 2024, Type 1 collagen: synthesis, structure, and key functions in bone mineralization, Differentiation, p. 100757.

[22].  Saito, M., Kida, Y., Kato, S., Marumo, K., 2014, Diabetes, collagen, and bone quality, Curr Osteoporos Rep, vol. 12, no. 2, p. 181–8.

[23].  Zaitseva, O. V., Shandrenko, S. G., Veliky, M. M., 2015, Biochemical markers of bone collagen type I metabolism, Ukr Biochem J, vol. 87, no. 1, p. 21–32.

[24].  Kim, E. C., Park, J., Kwon, I. K., Lee, S. W., Park, S. J., Ahn, S. J., 2017, Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells, J Periodontal Implant Sci, vol. 47, no. 5, p. 273–91.

[25].  Vimalraj, S., Govindarajan, D., Sudhakar, S., Suresh, R., Palanivel, P., Sekaran, S., 2024, Chitosan-derived chito-oligosaccharides promote osteoblast differentiation and offer anti-osteoporotic potential: molecular and morphological evidence from a zebrafish model, Int J Biol Macromol, vol. 259, p. 129250.

[26].  Govindarajan, D., Saravanan, S., Sudhakar, S., Vimalraj, S., 2023, Graphene: a multifaceted carbon-based material for bone tissue engineering applications, ACS Omega, vol. 9, no. 1, p. 67–80.