Influence of Acid and Alkali Surface Modifications on Titanium Implants: Enhancing Osseointegration and Osteoblast Differentiation

Download Article

DOI: 10.21522/TIJPH.2013.13.01.Art003

Authors : Palati Sinduja, Dhanraj Ganapathy, Saravanan Sekaran, Mr. Shiavam Madan

Abstract:

Titanium implants are widely used in biomedical applications due to their excellent biocompatibility and mechanical properties. However, achieving optimal osseointegration remains a challenge. Surface modification techniques, such as acid etching and alkali etching, have been shown to improve implant surface properties, including roughness and chemistry, thereby enhancing cellular adhesion and modulating molecular pathways critical for bone formation. This study evaluated titanium implant surfaces modified using acid etching and alkali etching. Surface topographies were characterized using scanning electron microscopy (SEM), revealing distinct morphologies. Acid-etched surfaces exhibited uniformly roughened structures, while alkali-etched surfaces showed smoother textures with pits. Chemical composition analysis, performed using X-ray photoelectron spectroscopy (XPS), indicated significant alterations, including the formation of bioactive layers that enhance implant integration. In vitro experiments demonstrated that acid-etched surfaces significantly promoted osteoblast adhesion and differentiation compared to alkali-etched surfaces. This was supported by the upregulation of osteogenic molecular markers such as Runx2, SP7, and DLX5, which are vital for bone formation. These findings suggest that acid etching enhances the biological performance of titanium implants, facilitating cellular behaviours necessary for successful osseointegration. In conclusion, acid etching and alkali etching are effective methods for improving titanium implant surfaces, with acid-etched surfaces showing superior potential in promoting osteoblast differentiation and adhesion. Further research is needed to investigate the long-term clinical impact of these surface modifications to optimize implant success and durability.

References:

[1].   Sivakumar, N. K., Palaniyappan, S., Sekar, V., Alodhayb, A., & Braim, M. 2023. An optimization approach for studying the effect of lattice unit cell’s design-based factors on additively manufactured poly methyl methacrylate cranio-implant. Journal of the Mechanical Behavior of Biomedical Materials, 141(105791), 105791. https://doi.org/10.1016/j.jmbbm.2023.105791

[2].   Patil, S., Bhandi, S., Alzahrani, K. J., Alnfiai, M. M., Testarelli, L., Soffe, B. W., Licari, F. W., Awan, K. H., & Tanaka, E. 2023. Efficacy of laser in re-osseointegration of dental implants-a systematic review. Lasers in Medical Science, 38(1), 199. https://doi.org/10.1007/s10103-023-03860-9

[3].   Madhu, K., Kannan, S., Perumal, A., & Shanmugam, P. 2023. Biofunctionalized nanocomposite coating on Cp-titanium with reduce implant failures. Vacuum, 215(112328), 112328. https://doi.org/10.1016/j.vacuum.2023.112328

[4].   Raval, A., S Yadav, N., Narwani, S., Somkuwar, K., Verma, V., Almubarak, H., Alqahtani, S. M., Tasleem, R., Luke, A. M., Kuriadom, S. T., & Karobari, M. I. 2023. Antibacterial efficacy and surface characteristics of boron nitride coated dental implant: An in-vitro study. Journal of Functional Biomaterials,ss 14(4). https://doi.org/10.3390/jfb14040201

[5].   Duraisamy, R., Ganapathy, D. and Shanmugam, R., 2021. Applications of chitosan in dental implantology-A literature review. Int. J. Dent. Oral Sci8, pp.4140-4146.

https://doi.org/10.19070/2377-8075-21000846

[6].   Groner, Y., Ito, Y., Liu, P., Neil, J. C., Speck, N. A., & van Wijnen, A. 2017. RUNX Proteins in Development and Cancer. Springer. https://play.google.com/store/books/details?id=1pNcDgAAQBAJ

[7].   Biosynthesis of Vitex-negundo mineralized hydroxyapatite coating on Ti for implant applications. (n.d.).

[8].   Liu, L., Luo, P., Liao, H., Yang, K., Yang, S., & Tu, M., 2024. Effects of aligned PLGA/SrCSH composite scaffolds on in vitro growth and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 112(1), e35366. https://doi.org/10.1002/jbm.b.35366

[9].   Pederson, E. D., Lamberts, B. L., NAVAL DENTAL RESEARCH INST GREAT LAKES IL., & Naval Dental Research Institute (U.S.)., 1989. Effect of Root-Surface Modification of Human Teeth on Adherence of Fibronectin. https://books.google.com/books/about/Effect_of_Root_Surface_Modification_of_H.html?hl=&id=xujdNwAACAAJ

[10].  Adden, N., 2006. Modification of Titanium to Generate Biocompatible and Bioactive Implant Surfaces. https://books.google.com/books/about/Modification_of_Titanium_to_Generate_Bio.html?hl=&id=OAoBPwAACAAJ

[11].  Kim, K.-H., Narayanan, R., & Rautray, T. R., 2010. Surface Modification of Titanium for Biomaterial Applications. https://books.google.com/books/about/Surface_Modification_of_Titanium_for_Bio.html?hl=&id=Ii0cQgAACAAJ

[12].  Omoniala, K., 2016. Surface Modification Strategies for Antimicrobial Titanium Implant Materials with Enhanced Osseointegration. https://books.google.com/books/about/Surface_Modification_Strategies_for_Anti.html?hl=&id=cjcbvwEACAAJ

[13].  Abdulla, M. A., Hasan, R. H., & Al-Hyani, O. H. 2023. Impact of Er,Cr:YSGG Laser, Sandblast, and Acid Etching Surface Modification on Surface Topography of Biodental Titanium Implants. Journal of Lasers in Medical Sciences, 14, e38. https://doi.org/10.34172/jlms.2023.38

[14].  Baima, G., Romano, F., Roato, I., Mosca Balma, A., Pedraza, R., Faga, M. G., Amoroso, F., Orrico, C., Genova, T., Aimetti, M., & Mussano, F. 2024. Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces. Journal of Functional Biomaterials, 15(1). https://doi.org/10.3390/jfb15010021

[15].  Ochi, Y., Yoshida, K., Huang, Y.-J., Kuo, M.-C., Nannya, Y., Sasaki, K., Mitani, K., Hosoya, N., Hiramoto, N., Ishikawa, T., Branford, S., Shanmuganathan, N., Ohyashiki, K., Takahashi, N., Takaku, T., Tsuchiya, S., Kanemura, N., Nakamura, N., Ueda, Y., … Shih, L.-Y., 2021. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nature Communications, 12(1), 2833. https://doi.org/10.1038/s41467-021-23097-w

[16].  Albrektsson, T., Tengvall, P., Amengual, L., Coli, P., Kotsakis, G. A., & Cochran, D. 2022. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Frontiers in Immunology, 13, 1056914. https://doi.org/10.3389/fimmu.2022.1056914

[17].  Li, H. 2007. Functional Studies of Dlx5 During Bone Formation: Implications of Dlx Genes in Promoting Osteoblast Differentiation. https://books.google.com/books/about/Functional_Studies_of_Dlx5_During_Bone_F.html?hl=&id=iHXezQEACAAJ

[18].  Liao, T., Xu, X., Wu, J., Xie, Y., & Yan, J. 2023. Increased expression levels of DLX5 inhibit the development of the nervous system. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 83(8), 728–739. https://doi.org/10.1002/jdn.10300