Evaluation of nCD64 in Patients with Periodontitis

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art025

Authors : Ullas Mony, Vishnu Priya Veeraraghavan, Chandra Bindu

Abstract:

Periodontitis causes tissue destruction and tooth loss if untreated. Neutrophil CD64 (nCD64), a biomarker will help in the early and precise diagnosis of inflammation. Thus, the aim of this study is to evaluate the potential of neutrophil nCD64 as a diagnostic marker by looking at the expression levels of nCD64 in people with periodontitis. This study involved 12 participants comprising of 6 healthy controls and 6 of patients with periodontitis. nCD64 levels were measured on acquired blood samples using flow cytometry. Mean fluorescence intensity (MFI) of nCD64 was compared between the two groups. When compared to healthy controls, patients with periodontitis had noticeably higher nCD64 MFI levels. In a patient, the greatest nCD64 MFI level was 861, whereas in a control, the lowest level was 19. Comorbid conditions like diabetes did not always correspond with elevated nCD64 levels, suggesting that periodontitis severity was the main factor affecting nCD64 expression. The current study suggests nCD64 as a useful biomarker for identifying periodontal inflammation, which helps with the timely and precise diagnosis of periodontitis. Future studies are necessary to corroborate these results using more extensive and heterogeneous groups.

References:

[1].   Mony, U., Sanju, S., Jain, P., Sugavanan, K., Sebastian, A., Theertha, M., Sidharthan, N., Varma, P. K., 2019, Detection of dysregulated host response by flow cytometry may pre-empt early diagnosis of sepsis after cardiac surgery. Blood, 134, 4863.

[2].   Ng, P. C, Li, G., Chui, K. M., Chu, W. C., Li, K., Wong, R. P, Chik, K. W, Wong, E., Fok, T. F., 2004, Neutrophil CD64 is a sensitive diagnostic marker for early-onset neonatal infection. Pediatr Res, 56(5), 796-803.

[3].   Davis, B. H., Olsen, S. H., Ahmad, E., Bigelow, N. C., 2006, Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Arch Pathol Lab Med, 130(5), 654-61.

[4].   Naiff, P. F., Kuckelhaus, S. A., Couto, S., Oliveira, M., Santiago, L. M., Cascaes, A. C., Silva, L. F., Oliveira, L. A., Grisi, D. C., Carneiro, V. M., Guimarães, M. D. C. M., 2021, Phagocytic activity of monocytes and neutrophils in patients with periodontitis, whether or not associated to type 2 diabetes. Acta Odontol Latinoam, 34(3), 201-213.

[5].   Magán-Fernández, A., Rasheed, Al-Bakri, S. M., O'Valle, F., Benavides-Reyes, C., Abadía-Molina, F., Mesa, F., 2020, Neutrophil Extracellular Traps in Periodontitis. Cells, 9(6), 1494.

[6].   Rastogi, P., Singhal, R., Sethi, A., Agarwal, A., Singh, V. K., Sethi, R., 2012, Assessment of the effect of periodontal treatment in patients with coronary artery disease: A pilot survey. J Cardiovasc Dis Res, 3(2), 124-7.

[7].   Doganyigit, Z., Eroglu, E., Akyuz, E., 2022, Inflammatory mediators of cytokines and chemokines in sepsis: From bench to bedside. Human & experimental toxicology, 41, 09603271221078871.

[8].   Liu, Q., Gao, Y., Yang, T., Zhou, Z., Lin, K., Zhang, W., Li, T., Lu, Y., Shao, L., Zhang, W., 2022, nCD64 index as a novel inflammatory indicator for the early prediction of prognosis in infectious and non-infectious inflammatory diseases: An observational study of febrile patients. Front Immunol, 13, 905060.

[9].   Wang, X., Li, Z. Y., Zeng, L., Zhang, A. Q., Pan, W., Gu, W., Jiang, J. X., 2015, Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. Crit Care, 19(1), 245.

[10].  Hirschfeld, J., 2020, Neutrophil Subsets in Periodontal Health and Disease: A Mini Review. Front Immunol, 10, 3001.

[11].  Oppegaard, O., Skodvin, B., Halse, A. K., Langeland, N., 2013, CD64 as a potential biomarker in septic arthritis. BMC Infect Dis, 13:278.

[12].  Xing, W., Wang, Y., Liu, J., Pei, J., Yu, C., 2023, Role of interleukins in the detection of neonatal sepsis: a network meta-analysis. Frontiers in Pediatrics, 11, 1267777.

[13].  Cid, J., García-Pardo, G., Aguinaco, R., Sánchez, R., Llorente, A., 2011, Neutrophil CD64: diagnostic accuracy and prognostic value in patients presenting to the emergency department. Eur J Clin Microbiol Infect Dis, 30(7), 845-52.

[14].  Allen, E., Bakke, A. C., Purtzer, M. Z., Deodhar, A., 2002, Neutrophil CD64 expression: distinguishing acute inflammatory autoimmune disease from systemic infections. Annals of the rheumatic diseases, 61(6), 522-5.

[15].  Bakke, A. C., Allen, E., Purtzer, M. Z., Deodhar, A., 2001, Neutrophil CD64 expression distinguishing acute inflammatory autoimmune disease from systemic infections. Clinical and Applied Immunology Reviews, 1(5), 267-75.

[16].  Sanju, S., Jain, P., Vishnu Priya, V., Varma, P. K., Mony, U., 2023, Quantitation of mHLA- DR and nCD64 by Flow Cytometry to Study Dysregulated Host Response: The Use of QuantiBRITETM PE Beads and Its Stability. Appl Biochem Biotechnol, 195(9),5747-5752.

[17].  Agnes, S., S., Sanju, Jain, P., Varma, P. K., Mony, U., 2021, Non-classical monocytes and its potential in diagnosing sepsis post cardiac surgery. International Immunopharmacology, 99,108037

[18].  Hassan, U., Ghonge, T., Reddy, Jr. B., Patel, M., Rappleye, M., Taneja, I., Tanna, A., Healey, R., Manusry, N., Price, Z., Jensen, T., 2017, A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nature communications, 8(1),15949

[19].  Liu, Q., Gao, Y., Yang, T., Zhou, Z., Lin, K., Zhang, W., Li, T., Lu, Y., Shao, L., Zhang W., 2022, nCD64 index as a novel inflammatory indicator for the early prediction of prognosis in infectious and non-infectious inflammatory diseases: An observational study of febrile patients. Front Immunol, 13,905060.

[20].  Ghosh, P. S., Singh, H., Azim, A., Agarwal, V., Chaturvedi, S., Saran, S., Mishra, P., Gurjar, M., Baronia, A. K, Poddar, B., Singh, R. K, Mishra, R., 2018, Correlation of Neutrophil CD64 with Clinical Profile and Outcome of Sepsis Patients during Intensive Care Unit Stay. Indian J Crit Care Med, 22(8),569-574.

[21].  Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14.

[22].  Thomas, J.T., Joseph, B., Varghese, S., Kamalasanan Vijayakumari, B., Sorsa, T., Mauramo, M., Anil, S. and Waltimo, T., 2024. Salivary advanced glycated end products, their receptors, and aMMP‐8 in periodontitis patients with varying glycemic levels: A cross‐sectional study. Journal of Periodontology.

[23].  Uppin, R.B., Varghese, S.S., Baseer, M.A., AlMugeiren, O.M., Mubaraki, S. and Alsaffan, A.D., 2024. Knowledge and Awareness of Metabolic Syndrome and its Relationship with Periodontal Disease among Dental Practitioners in Riyadh City, Saudi Arabia: A Cross-Sectional Study. Journal of International Oral Health16(6), pp.487-497.

[24].  Yadalam, P.K., Barbosa, F.T., Natarajan, P.M. and Ardila, C.M., 2024. Graph Neural Networks-Based Prediction of Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal Regeneration. Journal of Clinical and Experimental Dentistry16(12), p.e1454.

[25].  Priyangha, P.T., Kshirsagar, J.T. and Kalaiselvan, D., 2024. Exploring Serum Ceruloplasmin Dynamics in Stage II Periodontitis: Pre-and PostPhase I Therapy Assessment. Journal of the International Clinical Dental Research Organization16(2), pp.135-140.

[26].  Priya, V., Keerthivasan, S. and Kaviyarasi, R., Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation-An in-silico Approach.

[27].  Juvairiya Fathima, A., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Determining the Role of Caffeic Acid on Lipogenic Regulators: An In-Silico Approach.

[28].  Aarthi, L., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., Molecular Docking Analysis of Epigallocatechin 3-Gallate [EGCG] on Fatty Acids and Carnitine Transporters Family.

Hirshasri, A.G., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., The Effect of Aspalathin on SMAD2, SMAD3, TGF-β-A Major Contributor of Inflammation–An In-silico Approach