Harnessing the Power of Alkaloids in Breast Cancer Treatment: A Review of Therapeutic Efficacy and Challenges

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art021

Authors : Sridevi Gopathy, Arockya Stafi Arockyasamy, L. Durga, Rajagopal P

Abstract:

Cancer is a massive public health concern on a global scale. Developed nations have greater rates of breast cancer. Survival rates have increased as a result of early discovery. However, there are still major ongoing challenges which include variances in the availability of care, aggressive tumor subtypes, and the emergence of treatment resistance. These medical procedures have been linked with various adverse effects, prompting the usage of natural substances because they have less to no negative impact. Among these natural compounds is the class of alkaloids. These phytochemicals form a wide range of organic compounds that are naturally present and mostly derived from plant-kinds, but then they are also found in microbes, yeasts, and faunas. Characterized by nitrogen atoms, alkaloids exhibit more biological properties, making them of significant interest in various research fields. Alkaloids exhibit antiproliferative, antibacterial, and antioxidant properties and act as an abundant source for drug discovery and development. This study reviews the alkaloids matrine, noscapine, capsaicin, harmine, and Mahanine and describes their modes of action. These alkaloids can be utilized as tools of combination treatment and have been illustrated to initiate autophagy, reduce tumor volume, cause apoptosis, disrupt microtubule function, inhibit topoisomerase enzymes, and signaling pathway alterations involved in cell growth and survival to inhibit cell multiplication and migration. This review presents comprehensive data on the therapeutic potential of alkaloids against breast cancer.

References:

[1] Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K., 2010, Various types and management of breast cancer: an overview. Journal of Advanced Pharmaceutical Technology & Research, 1(2), pp.109-126.

[2] Menezes, M. R., 2015, The Biology of Cancer. Yale J Biol Med, 88(2),199–200. PMCID: PMC4445444.

[3] Krishnan, R. P., Pandiar, D., Ramani, P., & Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery, 126(4), 102120.

[4] Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A., 2022, Subtypes of breast cancer. Breast Cancer [Internet].

[5] Rezano, A., Ridhayanti, F., Rangkuti, A. R., Gunawan, T., Winarno, G. N. A., & Wijaya, I., 2021, Cytotoxicity of simvastatin in human breast cancer MCF-7 and MDA-MB-231 cell lines. Asian Pacific Journal of Cancer Prevention, 22(S1), 33-42.

[6] Pazhani, J., Chanthu, K., Jayaraman, S., & Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology, 27(4), 649-654.

[7] Rampogu, S., Balasubramaniyam, T., & Lee, J. H., 2022, Phytotherapeutic applications of alkaloids in treating breast cancer. Biomedicine & Pharmacotherapy, 155, 113760.

[8] Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6), 704-713.

[9] Sruthi, M. A., Mani, G., Ramakrishnan, M., & Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry, 33(1), 82-88.

[10] Niazi, P., & Monib, A. W., 2024, The role of plants in traditional and modern medicine. Journal of Pharmacognosy and Phytochemistry, 13(2), 643-647.

[11] Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), 1007-1013.

[12] Isah, T., 2016, Anticancer alkaloids from trees: Development into drugs. Pharmacognosy Reviews, 10(20), 90.

[13] McChesney, J. D., Venkataraman, S. K., & Henri, J. T., 2007, Plant natural products: back to the future or into extinction? Phytochemistry, 68(14), 2015-2022.

[14] Olofinsan, K., Abrahamse, H., & George, B. P., 2023, Therapeutic role of alkaloids and alkaloid derivatives in cancer management. Molecules, 28(14), 5578.

[15] Robinson, T., 1974, Metabolism and Function of Alkaloids in Plants: Alkaloids appear to be active metabolites, but their usefulness to plants remains obscure. Science, 184(4135), 430-435.

[16] Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., & Kim, H. S. 2020, Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent advances in natural products analysis (pp. 505-567). Elsevier.

[17] Liu, X. J., Cao, M. A., Li, W. H., Shen, C. S., Yan, S. Q., & Yuan, C. S., 2010, Alkaloids from Sophora flavescens Aition. Fitoterapia, 81(6), 524-527.

[18] He, X., Fang, J., Huang, L., Wang, J., & Huang, X., 2015, Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of ethnopharmacology172, 10-29.

[19] ur Rashid, H., Xu, Y., Muhammad, Y., Wang, L., & Jiang, J., 2019, Research advances on anticancer activities of matrine and its derivatives: An updated overview. European Journal of Medicinal Chemistry, 161, 205-238.

[20] Yu, P., Liu, Q., Liu, K., Yagasaki, K., Wu, E., & Zhang, G., 2009, Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-κ B signaling. Cytotechnology, 59, 219-229.

[21] Li, H., Li, X., Bai, M., Suo, Y., Zhang, G., & Cao, X., 2015, Matrine inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via upregulation of Bax and downregulation of Bcl-2. International Journal of Clinical and Experimental Pathology, 8(11), 14793.

[22] Li, L. Q., Li, X. L., Wang, L., Du, W. J., Guo, R., Liang, H. H., & Jiang, H. C., 2012, Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cellular Physiology and Biochemistry, 30(3), 631-641.

[23] Fathima, J. S., Jayaraman, S., Sekar, R., & Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology, 1-10.

[24] Zhou, B. G., Wei, C. S., Zhang, S., Zhang, Z., & Gao, H. M., 2018, Matrine reversed multidrug resistance of breast cancer MCF‐7/ADR cells through PI3K/AKT signaling pathway. Journal of Cellular Biochemistry, 119(5), 3885-3891.

[25] Wang, X. Y., Liang, L., Chang, J. L., Yang, M. H., & Li, Z. G., 2010, Toxicity of matrine in Kunming mice. Nan fang yi ke da xue xue bao= Journal of Southern Medical University, 30(9), 2154-2155.

[26] Sagar, S., Ramani, P., Moses, S., Gheena, S., & Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology, 1-10.

[27] Rampogu, S., Balasubramaniyam, T., & Lee, J. H., 2022, Phytotherapeutic applications of alkaloids in treating breast cancer. Biomedicine & Pharmacotherapy, 155, 113760.

[28] Tomar, V., Kukreti, S., Prakash, S., Madan, J., & Chandra, R., 2017, Noscapine and its analogs as chemotherapeutic agent: current updates. Current Topics in Medicinal Chemistry, 17(2), 174-188.

[29] Quisbert-Valenzuela, E. O., & Calaf, G. M., 2016, Apoptotic effect of noscapine in breast cancer cell lines. International Journal of Oncology, 48(6), 2666-2674.

[30] Sajadian, S., & Vatankhah, M., 2015, Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells. Toxicol Mech Methods,25 (5),388–395.

[31] Landen, J. W., Lang, R., McMahon, S. J., Rusan, N. M., Yvon, A. M., Adams, A. W., & Joshi, H. C., 2002, Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma. Cancer Research, 62(14), 4109-4114.

[32] Singh, H., Singh, P., Kumari, K., Chandra, A., K Dass, S., & Chandra, R., 2013, A review on noscapine, and its impact on heme metabolism. Current Drug Metabolism, 14(3), 351-360.

[33] Chou, C. C., Wu, Y. C., Wang, Y. F., Chou, M. J., Kuo, S. J., & Chen, D. R., 2009, Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncology Reports, 21(3), 665-671.

[34] Wu, D., Jia, H., Zhang, Z., & Li, S., 2020, Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β‑catenin signaling pathway. Molecular Medicine Reports, 22(6), 4868-4876.

[35] Roy, M., Chakraborty, S., Siddiqi, M., & Bhattacharya, R. K., 2002, Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac J Cancer Prev, 3(1), 61-67.

[36] Patel, K., Gadewar, M., Tripathi, R., Prasad, S. K., & Patel, D. K., 2012, A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pacific Journal of Tropical Biomedicine, 2(8), 660-664.

[37] Ma, Y., & Wink, M., 2010, The beta‐carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(1), 146-149.

[38] Ding, Y., He, J., Huang, J., Yu, T., Shi, X., Zhang, T., & Peng, C., 2019, Harmine induces anticancer activity in breast cancer cells via targeting TAZ. International Journal of Oncology, 54(6), 1995-2004.

[39] Yao, P., Yao, P., Ku, X., & Yang, J., 2023, Harmine suppresses the malignant phenotypes and PI3K activity in breast cancer. Anti-Cancer Drugs, 34(3), 373-383.

[40] Hu, Y., Yu, X., Yang, L., Xue, G., Wei, Q., Han, Z., & Chen, H., 2024, Research progress on the antitumor effects of harmine. Frontiers in Oncology, 14, 1382142.

[41] Ismail, A., Noolu, B., Gogulothu, R., Perugu, S., Rajanna, A., & Babu, S. K., 2016, Cytotoxicity and proteasome inhibition by alkaloid extract from Murraya koenigii leaves in breast cancer cells—molecular docking studies. Journal of Medicinal Food, 19(12), 1155-1165.

[42] Wada, M., Kosaka, M., Saito, S., Sano, T., Tanaka, K., & Ichihara, A., 1993, Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance. The Journal of Laboratory and Clinical Medicine, 121(2), 215-223.

[43] Noolu, B., & Ismail, A., 2015, Anti-proliferative and proteasome inhibitory activity of Murraya koenigii leaf extract in human cancer cell lines. Discovery Phytomedicine-Journal of Natural Products Research and Ethnopharmacology, 2(1), 1-9.

[44] Das, R., Bhattacharya, K., Sarkar, S., Samanta, S. K., Pal, B. C., & Mandal, C., 2014, RETRACTED ARTICLE: Mahanine synergistically enhances cytotoxicity of 5-fluorouracil through ROS-mediated activation of PTEN and p53/p73 in colon carcinoma. Apoptosis, 19(1), 149-164.

[45] Das, M., Kandimalla, R., Gogoi, B., Dutta, K. N., Choudhury, P., Devi, R., & Samanta, S. K. (2019). Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacological Research146, 104330.

[46] Samanta, S. K., Lee, J., Hahm, E. R., & Singh, S. V., 2018, Peptidyl‐prolyl cis/trans isomerase Pin1 regulates withaferin A‐mediated cell cycle arrest in human breast cancer cells. Molecular Carcinogenesis, 57(7), 936-946.

[47] Du, Z., Tong, X., & Ye, X., 2013, Cyclin D1 promotes cell cycle progression through enhancing NDR1/2 kinase activity independent of cyclin-dependent kinase 4. Journal of Biological Chemistry, 288(37), 26678-26687.

[48] Kim, S. H., & Singh, S. V., 2014, Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prevention Research, 7(7), 738-747.

[49]   Yasothkumar, D., Ramani, P., Jayaraman, S., Ramalingam, K., & Tilakaratne, W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology, 18(1), 28.