The Role of Pyrogallol as an Anti-cancer Agent Reduces Cell Proliferation in Lung Cancer Cells via AKT/PI3K Signaling Pathways - An In vitro and In silico Approaches

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art020

Authors : R. Priyadharshini, Prathiyangara

Abstract:

This study investigates the anticancer potential of Pyrogallol, focusing on its effects on cell viability, cell culture, docking analysis, and anticancer activity through fold change measurements. Pyrogallol, a naturally occurring phenolic compound, exhibits significant biological activity, including anticancer properties. This research highlights its therapeutic efficacy against specific cancer cell lines. The methodology involved culturing cancer cells under controlled conditions, followed by treatment with varying concentrations of Pyrogallol. Cell viability assays were conducted using the MTT method to evaluate cytotoxicity. Additionally, molecular docking was performed to analyze the binding interactions of Pyrogallol with target proteins implicated in cancer pathways, revealing strong affinity and specificity. Results demonstrated a dose-dependent reduction in cancer cell viability, indicating Pyrogallol's cytotoxic effects. Docking analysis revealed key interactions with critical residues in cancer-related proteins, supporting its mechanistic role in inducing apoptosis. Anticancer activity, measured by fold change in gene expression, confirmed significant upregulation of pro-apoptotic markers and downregulation of survival-associated markers. The findings underline Pyrogallol's potential as an anticancer agent with promising therapeutic implications. This comprehensive approach combining In vitro assays and computational analysis provides a foundation for future studies to explore Pyrogallol's clinical applications in cancer treatment.

References:

[1].   Gupta, A., Jeyakumar, E., Lawrence, R., 2021, Pyrogallol: a competent therapeutic agent of the future. Biotech Env Sc, 23(2):213-7, https://www.envirobiotechjournals.com/AJMBES/v23i22021/AJ-15.pdf

[2].   Revathi, S., Hakkim, F. L., Kumar, N. R., Bakshi, H. A., Rashan, L., Al-Buloshi, M., Hasson, S. S. A. A., Krishnan, M., Javid, F., & Nagarajan, K., 2018, Induction of HT-29 Colon Cancer Cells Apoptosis by Pyrogallol with Growth Inhibiting Efficacy Against Drug-Resistant Helicobacter pylori. Anti-cancer agents in medicinal chemistry, 18(13), 1875–1884. https://doi.org/10.2174/1871520618666180806104902

[3].   Ahn, H., Im, E., Lee, D. Y., Lee, H. J., Jung, J. H., Kim, S. H., 2019, Antitumor effect of pyrogallol via miR-134 mediated S phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling in hepatocellular carcinoma. International journal of molecular sciences, 20(16):3985, https://pubmed.ncbi.nlm.nih.gov/31426282/

[4].   Sampath, G., Shyu, D. J., Rameshkumar, N., Krishnan, M., Sivasankar, P., Kayalvizhi, N., 2019, Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. Journal of Cluster Science, 32:549-57, https://link.springer.com/article/10.1007/s10876-020-01813-8

[5].   Revathi, S., Hakkim, F. L., Ramesh Kumar, N., Bakshi, H. A., Sangilimuthu, A. Y., Tambuwala, M. M., Changez, M., Nasef, M. M., Krishnan, M., M., M., & Kayalvizhi, N., 2019, In Vivo Anti-Cancer Potential of Pyrogallol in Murine Model of Colon Cancer. Asian Pacific journal of cancer prevention: APJCP, 20(9), 2645–2651. https://doi.org/10.31557/APJCP.2019.20.9.2645

[6].   Liu, H., Chang, Y., Jin, L., 2024, Pyrogallol Suppresses the Tumor Progression via Modulating Aerobic Glycolysis and STAT2 Signaling Pathway in Non-small Cell Lung Carcinoma. Pharmacognosy Magazine, 20(3):973-82,https://journals.sagepub.com/doi/epub/10.1177/09731296241242542

[7].   Cicek, B., Tgzd. A., Çiçek, B., et al. 2023, Pyrogallol Induces Selective Cytotoxicity in SH-SY5Y and Cortical Neuron Cells. Recent Trends in Pharmacology, 1(1):1-10, https://dergipark.org.tr/en/pub/rtpharma/issue/77156/1260696

[8].   Arjsri, P., Mapoung, S., Semmarath, W., Srisawad, K., Tuntiwechapikul, W., Yodkeeree, S., Dejkriengkraikul, P., 2023, Pyrogallol from Spirogyra neglecta Inhibits Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3 β/β-catenin Signaling Pathway. International Journal of Molecular Sciences. 29;24(7):6452, https://pubmed.ncbi.nlm.nih.gov/37047425/

[9].   Yasothkumar, D., Jayaraman, S., Ramalingam, K., Ramani, P., 2023, In vitro Anti-Inflammatory and Antioxidant Activity of Seed Ethanolic Extract of Pongamia pinnata. Biomed Pharmacol J.16(4),2187-2193, https://biomedpharmajournal.org/vol16no4/in-vitro-anti-inflammatory-and-antioxidant-activity-of-seed-ethanolic-extract-of-pongamia-pinnata/

[10].  Praveen, G., Krishnamoorthy, K., Veeraraghavan, V. P., Jayaraman, S., 2024, Antioxidant and Anti-Inflammatory Activity of the Ethanolic Extract of Euphorbia Hirta Leaf Extract: An In Vitro and In Silico Study. J Pharm Bioallied Sci. 16(Suppl 2): S1304-7, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174252/

[11].  Wu, H. Y., Yang, F. L., Li, L. H., Rao, Y. K., Ju, T. C., Wong, W. T., Hsieh, C. Y., Pivkin, M. V., Hua, K. F., & Wu, S. H. 2018, Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Scientific Reports, 8(1), 17956. https://doi.org/10.1038/s41598-018-36411-2

[12].  Zuvairiya, U., Jayaraman, S., Sankaran, K., Veeraraghavan, V. P., R, G., 2024, Studies on the Effect of Piperine on Hepatocyte Nuclear Factor 1 Alpha (HNF-1α) and Sterol Regulatory Element-Binding Protein 1c (SREBP-1c) Levels in High-Fat-Diet and Sucrose-Induced Type 2 Diabetes Mellitus Rats. Cureus. 16(2): e5406, https://pubmed.ncbi.nlm.nih.gov/38481895/

[13].  Jayaraman, S., Natararaj, S., Veeraraghavan, V. P., 2024, Hesperidin Inhibits Oral Cancer Cell Growth via Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In Vitro and In Silico Analyses. Cureus. 16(2): e53458, https://pubmed.ncbi.nlm.nih.gov/38435153/

[14].  Pazhani, J., Veeraraghavan, V. P., Jayaraman, S., 2023, Molecular docking analysis of proflavin with the Wnt pathway targets for OSCC. Bioinformation, 19(4):464, https://pmc.ncbi.nlm.nih.gov/articles/PMC10563574/

[15].  Mostafa, R. G., Abd-ElHamid, E. S., El-Bolok, A. H., Eldin, E. A., Tohamy, S. M., 2021, Possible Effect of Pyrogallol on Tongue Squamous Cell Carcinoma SCC-25 Cells. Minia Journal of Medical Research, 32(2):77-87, https://mjmr.journals.ekb.eg/article_231548.html

[16].  Arjsri, P., Mapoung, S., Semmarath, W., et al. 2023, Pyrogallol from Inhibits Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3/-catenin Signaling Pathway. Int J Mol Sci.24(7):6452, https://pubmed.ncbi.nlm.nih.gov/37047425/

[17].  Alavi Rafiee, S., Farhoosh, R., Sharif, A., 2018, Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. European Journal of Lipid Science and Technology, 120(11):1800319, https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201800319

[18].  Ghasemi, E., Bamoharram, F. F., Karimi, E., Meghdadi, P., 2024, Investigating the anticancer potential and apoptotic signaling of nanocapsule-loaded pyrogallol in ovarian cancer cells (A2780). Results in Chemistry, 11:101772, https://www.sciencedirect.com/science/article/pii/S2211715624004685

[19].  Yang, C. J., Wang, C. S., Hung, J. Y., Huang, H. W., Chia, Y. C., Wang, P. H., Weng, C. F., Huang, M. S., 2009, Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung cancer (Amsterdam, Netherlands), 66(2), 162–168. https://doi.org/10.1016/j.lungcan.2009.01.016