The Role of Pyrogallol as an Anti-cancer Agent Reduces Cell Proliferation in Lung Cancer Cells via AKT/PI3K Signaling Pathways - An In vitro and In silico Approaches
Abstract:
This study investigates the anticancer potential
of Pyrogallol, focusing on its effects on cell viability, cell culture, docking
analysis, and anticancer activity through fold change measurements. Pyrogallol,
a naturally occurring phenolic compound, exhibits significant biological
activity, including anticancer properties. This research highlights its
therapeutic efficacy against specific cancer cell lines. The methodology involved
culturing cancer cells under controlled conditions, followed by treatment with
varying concentrations of Pyrogallol. Cell viability assays were conducted
using the MTT method to evaluate cytotoxicity. Additionally, molecular docking
was performed to analyze the binding interactions of Pyrogallol with target
proteins implicated in cancer pathways, revealing strong affinity and
specificity. Results demonstrated a dose-dependent reduction in cancer cell
viability, indicating Pyrogallol's cytotoxic effects. Docking analysis revealed
key interactions with critical residues in cancer-related proteins, supporting
its mechanistic role in inducing apoptosis. Anticancer activity, measured by
fold change in gene expression, confirmed significant upregulation of pro-apoptotic
markers and downregulation of survival-associated markers. The findings
underline Pyrogallol's potential as an anticancer agent with promising
therapeutic implications. This comprehensive approach combining In vitro assays
and computational analysis provides a foundation for future studies to explore
Pyrogallol's clinical applications in cancer treatment.
References:
[1].
Gupta,
A., Jeyakumar, E., Lawrence, R., 2021, Pyrogallol: a competent therapeutic
agent of the future. Biotech Env Sc, 23(2):213-7, https://www.envirobiotechjournals.com/AJMBES/v23i22021/AJ-15.pdf
[2].
Revathi, S., Hakkim, F. L., Kumar, N. R., Bakshi, H. A.,
Rashan, L., Al-Buloshi, M., Hasson, S. S. A. A., Krishnan, M., Javid, F., &
Nagarajan, K., 2018, Induction of HT-29 Colon Cancer Cells Apoptosis by
Pyrogallol with Growth Inhibiting Efficacy Against
Drug-Resistant Helicobacter pylori. Anti-cancer agents in
medicinal chemistry, 18(13), 1875–1884. https://doi.org/10.2174/1871520618666180806104902
[3].
Ahn,
H., Im, E., Lee, D. Y., Lee, H. J., Jung, J. H., Kim, S. H., 2019, Antitumor
effect of pyrogallol via miR-134 mediated S phase arrest and inhibition of
PI3K/AKT/Skp2/cMyc signaling in hepatocellular carcinoma. International
journal of molecular sciences, 20(16):3985, https://pubmed.ncbi.nlm.nih.gov/31426282/
[4].
Sampath,
G., Shyu, D. J., Rameshkumar, N., Krishnan, M., Sivasankar, P., Kayalvizhi, N.,
2019, Synthesis and characterization of pyrogallol capped silver nanoparticles
and evaluation of their in vitro anti-bacterial, anti-cancer profile against
AGS cells. Journal of Cluster Science, 32:549-57, https://link.springer.com/article/10.1007/s10876-020-01813-8
[5].
Revathi, S., Hakkim, F. L., Ramesh Kumar, N., Bakshi, H. A.,
Sangilimuthu, A. Y., Tambuwala, M. M., Changez, M., Nasef, M. M., Krishnan, M.,
M., M., & Kayalvizhi, N., 2019, In Vivo Anti-Cancer Potential of Pyrogallol
in Murine Model of Colon Cancer. Asian Pacific journal of cancer prevention:
APJCP, 20(9), 2645–2651. https://doi.org/10.31557/APJCP.2019.20.9.2645
[6].
Liu,
H., Chang, Y., Jin, L., 2024, Pyrogallol Suppresses the Tumor Progression via
Modulating Aerobic Glycolysis and STAT2 Signaling Pathway in Non-small Cell
Lung Carcinoma. Pharmacognosy Magazine, 20(3):973-82,https://journals.sagepub.com/doi/epub/10.1177/09731296241242542
[7].
Cicek,
B., Tgzd. A., Çiçek, B., et al. 2023, Pyrogallol Induces Selective Cytotoxicity
in SH-SY5Y and Cortical Neuron Cells. Recent Trends in Pharmacology,
1(1):1-10, https://dergipark.org.tr/en/pub/rtpharma/issue/77156/1260696
[8].
Arjsri,
P., Mapoung, S., Semmarath, W., Srisawad, K., Tuntiwechapikul, W., Yodkeeree, S.,
Dejkriengkraikul, P., 2023, Pyrogallol from Spirogyra neglecta Inhibits
Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer
Cells via Modulating Akt/GSK-3 β/β-catenin Signaling Pathway. International
Journal of Molecular Sciences. 29;24(7):6452, https://pubmed.ncbi.nlm.nih.gov/37047425/
[9].
Yasothkumar, D., Jayaraman, S.,
Ramalingam, K., Ramani, P., 2023, In vitro Anti-Inflammatory and Antioxidant
Activity of Seed Ethanolic Extract of Pongamia pinnata. Biomed Pharmacol J.16(4),2187-2193,
https://biomedpharmajournal.org/vol16no4/in-vitro-anti-inflammatory-and-antioxidant-activity-of-seed-ethanolic-extract-of-pongamia-pinnata/
[10].
Praveen, G., Krishnamoorthy, K.,
Veeraraghavan, V. P., Jayaraman, S., 2024, Antioxidant and Anti-Inflammatory
Activity of the Ethanolic Extract of Euphorbia Hirta Leaf Extract: An In Vitro
and In Silico Study. J Pharm Bioallied Sci. 16(Suppl 2): S1304-7, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174252/
[11].
Wu, H. Y., Yang, F. L., Li, L. H., Rao, Y. K., Ju, T. C.,
Wong, W. T., Hsieh, C. Y., Pivkin, M. V., Hua, K. F., & Wu, S. H. 2018,
Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent
apoptosis and autophagy in human lung adenocarcinoma cells. Scientific
Reports, 8(1), 17956. https://doi.org/10.1038/s41598-018-36411-2
[12].
Zuvairiya, U., Jayaraman, S., Sankaran, K.,
Veeraraghavan, V. P., R, G., 2024, Studies on the Effect of Piperine on
Hepatocyte Nuclear Factor 1 Alpha (HNF-1α) and Sterol Regulatory
Element-Binding Protein 1c (SREBP-1c) Levels in High-Fat-Diet and
Sucrose-Induced Type 2 Diabetes Mellitus Rats. Cureus. 16(2): e5406, https://pubmed.ncbi.nlm.nih.gov/38481895/
[13].
Jayaraman, S., Natararaj, S.,
Veeraraghavan, V. P., 2024, Hesperidin Inhibits Oral Cancer Cell Growth via
Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In
Vitro and In Silico Analyses. Cureus. 16(2): e53458, https://pubmed.ncbi.nlm.nih.gov/38435153/
[14].
Pazhani, J., Veeraraghavan, V. P.,
Jayaraman, S., 2023, Molecular docking analysis of proflavin with the Wnt
pathway targets for OSCC. Bioinformation, 19(4):464, https://pmc.ncbi.nlm.nih.gov/articles/PMC10563574/
[15].
Mostafa, R. G., Abd-ElHamid, E. S.,
El-Bolok, A. H., Eldin, E. A., Tohamy, S. M., 2021, Possible Effect of
Pyrogallol on Tongue Squamous Cell Carcinoma SCC-25 Cells. Minia Journal of
Medical Research, 32(2):77-87, https://mjmr.journals.ekb.eg/article_231548.html
[16].
Arjsri, P., Mapoung, S., Semmarath, W.,
et al. 2023, Pyrogallol from Inhibits Proliferation and Promotes Apoptosis in
Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3/-catenin
Signaling Pathway. Int J Mol Sci.24(7):6452, https://pubmed.ncbi.nlm.nih.gov/37047425/
[17].
Alavi Rafiee, S., Farhoosh, R., Sharif,
A., 2018, Antioxidant activity of gallic acid as affected by an extra carboxyl
group than pyrogallol in various oxidative environments. European Journal of
Lipid Science and Technology, 120(11):1800319, https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201800319
[18].
Ghasemi, E., Bamoharram, F. F., Karimi, E.,
Meghdadi, P., 2024, Investigating the anticancer potential and apoptotic
signaling of nanocapsule-loaded pyrogallol in ovarian cancer cells (A2780). Results
in Chemistry, 11:101772, https://www.sciencedirect.com/science/article/pii/S2211715624004685
[19]. Yang, C. J., Wang, C. S., Hung, J. Y., Huang, H. W., Chia, Y. C., Wang, P. H., Weng, C. F., Huang, M. S., 2009, Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung cancer (Amsterdam, Netherlands), 66(2), 162–168. https://doi.org/10.1016/j.lungcan.2009.01.016