Camptothecin Anti-cancer Activity Against Breast Cancer Cells (MDA MB-231) Targeting the Gene Expression of Wnt/Beta-catenin Pathway - An In silico and In vitro Approach

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art017

Authors : Selvaraj Jayaraman, Vishnu Priya Veeraraghavan

Abstract:

Camptothecin, a potent anti-cancer agent, exhibits significant activity against MDA-MB-231 breast cancer cells by targeting the gene expression of the Wnt/β-catenin pathway. This pathway is crucial in cancer progression and cell proliferation. Camptothecin's effect on this pathway is elucidated through various assays and docking techniques. The DPPH assay demonstrates camptothecin's antioxidant potential, indicating its ability to neutralize free radicals. Additionally, nitric oxide assays reveal a significant enhancement in antioxidant properties, further supporting its therapeutic potential. Gene expression analysis provides insights into the molecular mechanisms underlying camptothecin's anti-cancer effects. The expression levels of key components of the Wnt/β-catenin pathway, including Wnt, β-catenin, APC, GSK3β, LP5, and Axin, are significantly altered in MDA-MB-231 cells upon camptothecin treatment. These changes suggest a disruption in the signaling pathway, which is vital for cancer cell survival and proliferation. The MTT assay results highlight camptothecin's capacity to inhibit cell growth in a time-dependent manner, underscoring its efficacy in reducing cancer cell viability over prolonged exposure. Moreover, docking studies indicate a high binding affinity between camptothecin and the Wnt/β-catenin pathway components, reinforcing the compound's role in modulating this critical signaling axis. Overall, camptothecin's multi-faceted approach, encompassing antioxidant activity and targeted gene expression modulation, presents a compelling case for its use in breast cancer therapy. The comprehensive analysis of its effects on the Wnt/β-catenin pathway offers valuable insights into its mechanism of action and potential as a therapeutic agent against aggressive breast cancer types like MDA-MB-231 cells.

References:

[1].   Venditto, V. J., & Simanek, E. E., 2010, Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Molecular Pharmaceutics, 7(2), 307–349. https://doi.org/10.1021/mp900243b

[2].   Narasimhan, A., Sampath, S., Jayaraman, S., & Karundevi, B., 2013, Estradiol favors glucose oxidation in gastrocnemius muscle through modulation of insulin signaling molecules in adult female rats. Endocrine Research, 38(4), 251-262.

[3].   Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Effect of Carica papaya on IRS-1/Akt signaling mechanisms in high-fat-diet-streptozotocin-induced type 2 diabetic experimental rats: A mechanistic approach. Nutrients, 14(19), 4181.

[4].   Perumal, S., Langeshwaran, K., Selvaraj, J., Ponnulakshmi, R., Shyamaladevi, B., & Balasubramanian, M. P., 2018, Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Molecular and Cellular Biochemistry, 449, 27-37.

[5].   Devarajan, N., Jayaraman, S., Mahendra, J., Venkatratnam, P., Rajagopal, P., Palaniappan, H., & Ganesan, S. K., 2021, Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytotherapy Research, 35(6), 3059-3077.

[6].   Jayaraman, S., Natararaj, S., & Veeraraghavan, V. P., 2024, Hesperidin inhibits oral cancer cell growth via apoptosis and inflammatory signaling-mediated mechanisms: Evidence from in vitro and in silico analyses. Cureus, 16(2).

[7].   Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6), 704-713.

[8].   Jayaraman, S., Veeraraghavan, V. P., Natarajan, S. R., & Jasmine, S., 2024, Exploring the therapeutic potential of curcumin in oral squamous cell carcinoma (HSC-3 cells): Molecular insights into hypoxia-mediated angiogenesis. Pathology-Research and Practice, 254, 155130.

[9].   Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), 1007-1013. https://doi.org/10.1016/j.sdentj.2023.08.003

[10].  Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Carica papaya reduces muscle insulin resistance via IR/GLUT4 mediated signaling mechanisms in high fat diet and streptozotocin-induced type-2 diabetic rats. Antioxidants, 11(10), 2081.

[11].  Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Prasad, M., 2023, Carica papaya reduces high fat diet and streptozotocin-induced development of inflammation in adipocyte via IL-1β/IL-6/TNF-α mediated signaling mechanisms in type-2 diabetic rats. Current Issues in Molecular Biology, 45(2), 852.

[12].  Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M., 2022, Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules (Basel, Switzerland), 27(4), 1326. https://doi.org/10.3390/molecules27041326

[13].  Chen, K., Pittman, R. N., & Popel, A. S., 2008, Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxidants & Redox Signaling, 10(7), 1185–1198. https://doi.org/10.1089/ars.2007.1959

[14].  Krishnamoorthy, K., Natarajan, S. R., Veeraraghavan, V. P., & Jayaraman, S., 2024, Blueberry extract and its bioactive compounds mitigate oxidative stress and suppress human lung cancer cell (A549) growth by modulating the expression of p53/EGFR/STAT3/IL6-mediated signaling molecules. Cell Biochemistry and Function, 42(4), e4027. https://doi.org/10.1002/cbf.4027

[15].  Indu, S., Vijayalakshmi, P., Selvaraj, J., & Rajalakshmi, M., 2021, Novel triterpenoids from Cassia fistula stem bark depreciates STZ-induced detrimental changes in IRS-1/Akt-mediated insulin signaling mechanisms in type-1 diabetic rats. Molecules, 26(22), 6812.

[16].  Deenadayalan, A., Subramanian, V., Paramasivan, V., Veeraraghavan, V. P., Rengasamy, G., Coiambatore Sadagopan, J., & Jayaraman, S., 2021, Stevioside attenuates insulin resistance in skeletal muscle by facilitating IR/IRS-1/Akt/GLUT 4 signaling pathways: An in vivo and in silico approach. Molecules, 26(24), 7689.

[17].  Chang, L. C., Chen, T. C., Chen, S. J., Chen, C. L., Lee, C. C., Wu, S. H., & Lin, J. J., 2016, Identification of a new class of WNT1 inhibitor: Cancer cells migration, G-quadruplex stabilization and target validation. Oncotarget, 7(42), 67986.

[18].  Khademian, N., Mirzaei, A., Hosseini, A., Zare, L., Nazem, S., Babaheidarian, P., & Tavakoli-Yaraki, M., 2022, Expression pattern and clinical significance of β-catenin gene and protein in patients with primary malignant and benign bone tumors. Scientific Reports, 12(1), 9488.

[19].  Domoto, T., Uehara, M., Bolidong, D., & Minamoto, T., 2020, Glycogen synthase kinase 3β in cancer biology and treatment. Cells, 9(6), 1388.

[20].  Prasad, M., Gatasheh, M. K., Alshuniaber, M. A., Krishnamoorthy, R., Rajagopal, P., Krishnamoorthy, K., et al. 2022, Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants (Basel), 11(12), 2436. http://dx.doi.org/10.3390/antiox11122436

[21].  Vishaka, S., Sridevi, G., Selvaraj, J., 2022, An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia galanga rhizome using different solvent systems. J Adv Pharm Technol Res, 13(Suppl 2), S505–9. http://dx.doi.org/10.4103/japtr.japtr_189_22

[22].  Chandran, D., Jayaraman, S., Sankaran, K., Veeraraghavan, V. P., Gayathri, R., 2023, Antioxidant Vitamins Attenuate Glyphosate-Induced Development of Type-2 Diabetes Through the Activation of Glycogen Synthase Kinase-3 β and Forkhead Box Protein O-1 in the Liver of Adult Male Rats. Cureus, 15(12), e51088. doi: 10.7759/cureus.51088.

[23].  El-Sayed, A. S. A., Hassan, W. H. B., Sweilam, S. H., Alqarni, M. H. S., El Sayed, Z. I., Abdel-Aal, M. M., Abdelsalam, E., & Abdelaziz, S., 2022, Production, Bioprocessing and Anti-Proliferative Activity of Camptothecin from Penicillium chrysogenum, "An Endozoic of Marine Sponge, Cliona sp.", as a Metabolically Stable Camptothecin Producing Isolate. Molecules (Basel, Switzerland), 27(9), 3033. https://doi.org/10.3390/molecules27093033.

[24].  Yadalam, P. K., Arumuganainar, D., Ronsivalle, V., Di Blasio, M., Badnjevic, A., Marrapodi, M. M., Cervino, G., & Minervini, G., 2024, Prediction of interactomic hub genes in PBMC cells in type 2 diabetes mellitus, dyslipidemia, and periodontitis. BMC oral health24(1), 385. https://doi.org/10.1186/s12903-024-04041-y.

[25].  Al-Shorman, H. M., Abu-Naba'a, L. A., Sghaireen, M. G., & Alam, M. K., 2024, The Effect of Various Preparation and Cementation Techniques of Dental Veneers on Periodontal Status: A Systematic Review and Meta-Analysis. European Journal of Dentistry, 18(2), 458–467. https://doi.org/10.1055/s-0043-1776120.

[26].  Mathew, M. G., Jeevanandan, G., Vishwanathaiah, S., Hamzi, K. A., Depsh, M. A. N., & Maganur, P. C., 2022, Parental and Child Outlook on the Impact of ECC on Oral Health-related Quality of Life: A Prospective Interventional Study. The Journal of Contemporary Dental Practice, 23(9), 877–882. https://doi.org/10.5005/jp-journals-10024-3397

[27].  Jamshidi-Adegani, F., Ghaemi, S., Al-Hashmi, S., Vakilian, S., Al-Kindi, J., Rehman, N. U., Alam, K., Al-Riyami, K., Csuk, R., Arefian, E., & Al-Harrasi, A., 2022, Comparative study of the cytotoxicity, apoptotic, and epigenetic effects of Boswellic acid derivatives on breast cancer. Scientific Reports, 12(1), 19979. https://doi.org/10.1038/s41598-022-24229-y

[28].  Hemmati Bushehri, R., Navabi, P., Saeedifar, A. M., Keshavarzian, N., Hosseini Rouzbahani, N., Mosayebi, G., Ghazavi, A., Ghorban, K., & Ganji, A., 2023, Integration of phytotherapy and chemotherapy: Recent advances in anticancer molecular pathways. Iranian Journal of Basic Medical Sciences, 26(9), 987–1000. https://doi.org/10.22038/IJBMS.2023.69979.15222.

[29].  Lopes, C. M., Dourado, A., & Oliveira, R., 2017, Phytotherapy and Nutritional Supplements on Breast Cancer. BioMed Research International, 2017, 7207983. https://doi.org/10.1155/2017/7207983.

[30].  Bailly, C., & Vergoten, G., 2023, Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules (Basel, Switzerland), 28(4), 1828. https://doi.org/10.3390/molecules28041828.

[31].  Wintola, O. A., & Afolayan, A. J., 2011, Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacognosy Magazine, 7(28), 325–333. https://doi.org/10.4103/0973-1296.90414.

[32].  Simu, S., Marcovici, I., Dobrescu, A., Malita, D., Dehelean, C. A., Coricovac, D., Olaru, F., Draghici, G. A., & Navolan, D., 2021, Insights into the Behavior of Triple-Negative MDA-MB-231 Breast Carcinoma Cells Following the Treatment with 17β-Ethinylestradiol and Levonorgestrel. Molecules (Basel, Switzerland), 26(9), 2776. https://doi.org/10.3390/molecules26092776.

[33].  Márquez-Garbán, D. C., Yanes, C. D., Llarena, G., Elashoff, D., Hamilton, N., Hardy, M., Wadehra, M., McCloskey, S. A., & Pietras, R. J., 2024, Manuka Honey Inhibits Human Breast Cancer Progression in Preclinical Models. Nutrients, 16(14), 2369. https://doi.org/10.3390/nu16142369