A Comprehensive Review on Impact of Altered Epigenetics on the Development of Diabetes
Abstract:
In earlier days, researchers were
concluding the origin of the disease based on genetic or environmental factors.
In the past few years, Epigenetics has been considered as source of certain diseases
which could not be ascertained by traditional sources. Recently, more focus has
been given to epigenetics, for diseases for which autoimmune disorders,
Cardiovascular disease, Cancer, Diabetes, neurodegenerative etc. The original
and categorical descriptions of epigenetic alterations, as well as the function
of epigenetics in biology and the relationship between epigenetics and the environment,
are clarified in the current review. It appears that the significance of
epigenetics in human disease is examined by concentrating on a few diseases
with complex characteristics. Finally, we have provided an outlook for this
field’s future. This review explains the relationship between the epigenetic
markers and the environment which influences diabetes.
References:
[1].
Armstrong,
L., 2014, Epigenetics. London: Garland Science.
[2].
Berger,
S. L., Kouzarides T., Shiekhattar R., Shilatifard A., 2009, An operational
definition of epigenetics. Genes Dev., 1;23 (7), 781–3. doi:
10.1101/gad.1787609.
[3].
Moosavi, A., Ardekani,
A. M., 2016, Role of epigenetics in biology and human diseases. Iran.
Biomed. J., 20, 246–258.
[4].
Jayaraman, S.,
Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., Jasmine, S., 2023,
Unlocking the potential of beta sitosterol: Augmenting the suppression of oral
cancer cells through extrinsic and intrinsic signalling mechanisms. The
Saudi Dental Journal, 35(8), pp.1007-1013.
[5].
Holliday, R., 2006,
Epigenetics: a historical overview. Epigenetics, 1, 76– 80.
[6].
Pinel,
C., Prainsack, B., McKevitt, C., 2019, Markers as mediators: A review and
synthesis of epigenetics literature. Biosocieties., 10;13(1), 276-303.
doi: 10.1057/s41292-017-0068-x.
[7].
Cavalli, G., Heard E.,
2019, Advances in epigenetics link genetics to the environment and disease. Nature,
571(7766), 489–499. doi: 10.1038/s41586-019-1411-0.
[8].
Sruthi, M. A., Mani, G.,
Ramakrishnan, M. and Selvaraj, J., 2023, Dental caries as a source of
Helicobacter pylori infection in children: An RT‐PCR study. International
Journal of Paediatric Dentistry, 33(1), pp.82-88.
[9].
Bansal, A., Pinney, S.
E., 2017, DNA methylation and its role in the pathogenesis of diabetes. Pediatr
Diabetes, 18(3), 167–177. doi: 10.1111/pedi.12521.
[10].
Jayaraman, S.,
Natarajan, S. R., Veeraraghavan, V. P., and Jasmine, S., 2023, Unveiling the
anti-cancer mechanisms of calotropin: Insights into cell growth inhibition,
cell cycle arrest, and metabolic regulation in human oral squamous carcinoma
cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6),
pp.704-713.
[11].
Rönn, T., Ling, C., 2015,
DNA methylation as a diagnostic and therapeutic target in the battle against
Type 2 diabetes. Epigenomics. 7(3):451-60. doi: 10.2217/epi.15.7.
[12].
Szabó, M., Máté, B.,
Csép, K., Benedek, T., 2018, Epigenetic Modifications Linked to T2D, the
Heritability Gap, and Potential Therapeutic Targets. Biochem Genet. 2018
56(6):553-574. doi: 10.1007/s10528-018-9863-8.
[13].
Ling, C., 2020,
Epigenetic regulation of insulin action and secretion - role in the
pathogenesis of type 2 diabetes. J Intern Med. 288(2):158-167. doi:
10.1111/joim.13049.
[14].
Jin,
B., Li, Y., Robertson, K. D., 2011, DNA methylation: superior or subordinate in
the epigenetic hierarchy? Genes Cancer, 2(6), 607–17. doi:
10.1177/1947601910393957.
[15].
Ling C., 2020,
Epigenetic regulation of insulin action and secretion - role in the
pathogenesis of type 2 diabetes, J Intern Med, 288(2), 158–167.
[16].
Juvinao-Quintero, D. L.,
Marioni, R. E., Ochoa-Rosales, C., Russ, T. C., Deary, I. J., Van Meurs, J. B.,
Voortman, T., Hivert, M. F., Sharp, G. C., Relton, C. L., and Elliott, H. R.,
2021, DNA methylation of blood cells is associated with prevalent type 2
diabetes in a meta-analysis of four European cohorts, Clinical epigenetics,
13, 1–14.
[17].
Raciti G. A., Desiderio,
A., Longo, M., Leone, A., Zatterale, F., Prevenzano, I., Miele, C., Napoli, R.,
Beguinot, F., 2021, DNA Methylation and Type 2 Diabetes: Novel Biomarkers for
Risk Assessment? Int J Mol Sci., 28;22(21), 11652. doi:
10.3390/ijms222111652.
[18].
Alaskhar
A. B., Khalaila, R., Wolf, J., von Bülow V., Harb, H., Alhamdan, F., Hii, C.
S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H., Potaczek, D. P., 2018, Histone
modifications and their role in epigenetics of atopy and allergic diseases, Allergy
Asthma Clin Immunol., 23(14), 39. doi: 10.1186/s13223-018-0259-4.
[19].
Kourtidou,
C., Tziomalos, K., 2023, The Role of Histone Modifications in the Pathogenesis
of Diabetic Kidney Disease. Int. J. Mol. Sci, 24, 6007, https://doi.org/10.3390/ijms24066007
[20].
Lu, H. C., Dai, W. N.,
He, L. Y., 2021, Epigenetic Histone Modifications in the Pathogenesis of
Diabetic Kidney Disease. Diabetes Metab Syndr Obes, 14, 329-344 https://doi.org/10.2147/DMSO.S288500
[21].
O’Brien, J., Hayder, H.,
Zayed, Y., Peng, C., 2018, Overview of MicroRNA Biogenesis, Mechanisms of
Actions, and Circulation. Front Endocrinol (Lausanne), 9, 402. doi:
10.3389/fendo.2018.00402.
[22].
Wightman, B., Ha, I.,
Ruvkun, G., 1993, Posttranscriptional regulation of the heterochronic gene
lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–62. doi: 10.1016/0092-8674(93)90530-4
[23].
Lee, R. C., Feinbaum, R.
L., Ambros, V., 1993, The C. elegans
heterochronic gene lin-4 encodes small RNAs with antisense complementarity to
lin-14. Cell, 75, 843–54. doi:
10.1016/0092-8674(93)90529-Y.
[24].
Jo, S., Chen, J., Xu,
G., Grayson, T. B., Thielen, L. A., Shalev, A., 2018, miR-204 Controls
Glucagon-Like Peptide 1 Receptor Expression and Agonist Function. Diabetes,
67(2), 256–264. doi: 10.2337/db17-0506.
[25].
Bartel, D. P., Metazoan
MicroRNAs, 2018, Cell, 173(1), 20–51. doi: 10.1016/j.cell.2018.03.006.
[26].
Denli,
A. M., Tops, B. B., Plasterk, R. H., KettingM R. F., Hannon, G. J., 2004, Processing
of primary microRNAs by the Microprocessor complex, Nature, 432, 231–5.
doi: 10.1038/nature03049.
[27].
Yoda,
M., Kawamata, T., Paroo, Z., Ye, X., Iwasaki, S., Liu, Q., et al. 2010,
ATP-dependent human RISC assembly pathways, Nat Struct Mol Biol, 17,
17–23. doi: 10.1038/nsmb.1733
[28].
Vargas, E., Podder, V.,
Carrillo Sepulveda, M. A., Physiology, Glucose Transporter Type 4. 2023, In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
[29].
Ramalingam, K., Yadalam,
P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., &
Minervini, G., 2024, Light gradient boosting-based prediction of quality of
life among oral cancer-treated patients. BMC Oral Health, 24(1), 349. https://doi.org/10.1186/s12903-024-04050-x
[30].
Sagar, S., Ramani, P.,
Moses, S., Gheena, S. and Selvaraj, J., 2024, Correlation of salivary cytokine
IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic
treatment. Odontology, pp.1-10.
[31].
Neralla, M. M. H.,
Preethi, A., Selvakumar, S. C., & Sekar, D., 2024, Expression levels of
microRNA-7110 in oral squamous cell carcinoma. Minerva Dental and Oral
Science, 73(3), 155–160. https://doi.org/10.23736/S2724-6329.23.04801-5
[32].
Erik A. R., 2021, Is
GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake?
American
Journal of Physiology-Endocrinology and Metabolism, 320(2), E240–E243.
[33].
Kaimala,
S, Kumar, C. A., Allouh, M. Z., Ansari, S. A., Emerald, B. S., 2022, Epigenetic
modifications in pancreas development, diabetes, and therapeutics. Med Res
Rev, 42(3), 1343–1371. doi: 10.1002/med.21878.
[34].
Ramsundar, K., Jain, R.
K., Balakrishnan, N., & Vikramsimha, B., 2023, Comparative evaluation of
bracket bond failure rates of a novel non-primer adhesive with a conventional
primer-based orthodontic adhesive - a pilot study. Journal of Dental Research, Dental Clinics, Dental Prospects, 17(1), 35–39. https://doi.org/10.34172/joddd.2023.36953.
[35].
Andersen, M. K.,
Pedersen, C. E., Moltke, I., Hansen, T., Albrechtsen, A., Grarup, N., 2016,
Genetics of Type 2 Diabetes: The Power of Isolated Populations, Curr.
Diab. Rep, 16, 65.
[36].
Cole, J. B., Florez, J.
C., 2020, Genetics of diabetes mellitus and diabetes complications, Nat.
Rev. Nephrol., 16, 377–390.
[37].
Udler,
M. S.,
McCarthy, M. I., Florez, J. C., Mahajan, A., 2019, Genetic Risk Scores for
Diabetes Diagnosis and Precision Medicine, Endocrine Rev, 40,
1500–1520.
[38].
Mahajan, A., Taliun, D.,
Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W., Payne, A. J.,
Steinthorsdottir, V., Scott, R. A., Grarup, N.; et al., 2018, Fine-mapping type
2 diabetes loci to single-variant resolution using high-density imputation and
islet-specific epigenome maps, Nat. Genet, 50, 1505–1513.
[39].
Fathima, J. S.,
Jayaraman, S., Sekar, R. and Syed, N. H., 2024, The role of MicroRNAs in the
diagnosis and treatment of oral premalignant disorders. Odontology,
pp.1-10.
[40].
Florez, J. C., Udler, M.
S., Hanson, R. L., Genetics of Type 2 Diabetes, 2018, In Diabetes in
America, 3rd ed.; Cowie, C.C., Casagrande, S.S., Menke, A., Cissell, M.A.,
Eberhardt, M.S., Meigs, J.B., Gregg, E.W., Knowler, W.C., Barrett-Connor, E.,
Becker, D.J., et al., Eds.; National Institute of Diabetes and Digestive and
Kidney Diseases (US): Bethesda, MA, USA, pp. 1–25, Chapter 14.
[41].
Florez, J. C., 2008,
Newly identified loci highlight beta cell dysfunction as a key cause of type 2
diabetes: Where are the insulin resistance genes? Diabetologia, 51,
1100–1110.
[42].
McCarthy, M. I., 2010,
Genomics, type 2 diabetes, and obesity. N. Engl. J. Med, 363,
2339–2350.
[43].
Petrie, J. R., Pearson,
E. R., Sutherland, C., 2011, Implications of genome wide association studies
for the understanding of type 2 diabetes pathophysiology. Biochem. Pharmacol, 81,
471–477.
[44].
Altshuler, D.,
Hirschhorn, J. N., Klannemark, M., Lindgren, C. M., Vohl, M. C., Nemesh, J.,
Lane, C.R., Schaffner, S. F., Bolk, S., Brewer, C., et al., 2000, The common
PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2
diabetes. Nat. Genet., 26, 76–80.
[45].
Gloyn, A. L., Weedon, M.
N., Owen, K. R., Turner, M. J., Knight, B. A., Hitman, G., Walker, M., Levy, J.
C., Sampson, M., Halford, S., et al. 2003, Large-scale association studies of
variants in genes encoding the pancreatic beta-cell KATP channel subunits
Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is
associated with type 2 diabetes, Diabetes, 52, 568–572.
[46].
Chi, T., Lin, J., Wang,
M., Zhao, Y., Liao, Z., Wei, P., 2021, Non-Coding RNA as Biomarkers for Type 2
Diabetes Development and Clinical Management. Front Endocrinol (Lausanne).
12:630032. doi: 10.3389/fendo.2021.630032.
[47].
Fanucchi,
S., Domínguez-Andrés, J., Joosten, L. A. B., Netea, M. G., Mhlanga, M. M.,
2021, The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity, 54(1), 32–43. doi:
10.1016/j.immuni.2020.10.011.
[48].
Krishnan, R. P.,
Pandiar, D., Ramani, P. and Jayaraman, S., 2025, Molecular profiling of oral
epithelial dysplasia and oral squamous cell carcinoma using next generation
sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery, 126(4),
p.102120.
[49].
Čugalj, K. B., Trebušak,
K., Kovač, J., Šket, R., Jenko, B. B., Tesovnik, T., Debeljak, M., Battelino,
T., Bratina, N., 2022, The Role of Epigenetic Modifications in Late
Complications in Type 1 Diabetes. Genes (Basel), 13(4), 705. doi:
10.3390/genes13040705.
[50].
Singh,
R., Chandel, S., Dey, D., Ghosh, A., Roy, S., Ravichandiran, V., Ghosh, D.,
2020, Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci
Rep. 40(9): BSR20202160. doi: 10.1042/BSR20202160.
[51].
Paneni,
F., Costantino, S., Battista, R., Castello, L., Capretti, G., Chiandotto, S.,
Scavone, G., Villano, A., Pitocco, D., Lanza, G., Volpe, M., Lüscher, T. F.,
Cosentino, F., 2015, Adverse epigenetic signatures by histone methyltransferase
Set7 contribute to vascular dysfunction in patients with type 2 diabetes
mellitus. Circ Cardiovasc Genet. 8(1):150-8. doi:
10.1161/CIRCGENETICS.114.000671.
[52].
Yasothkumar,
D., Ramani, P., Jayaraman, S., Ramalingam, K., and Tilakaratne, W. M., 2024,
Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral
Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous
Fibrosis. Head and Neck Pathology, 18(1), p.28.