Exploring the Antioxidant Activity of Phytol from the Scoparia dulcis Through In-silico Analysis

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art013

Authors : M. Rajalakshmi, S. Aishwariya

Abstract:

Diabetes is a long-term physiological disorder that affects people of all ages and has a major negative impact on people's ability to live normal, harmonious lives across the globe. The discovery of innovative antidiabetic medications is necessary due to the emergence of resistance and adverse effects of existing oral antidiabetic drugs, even with the availability of insulin preparations and various synthetic alternatives. Due to the side effects, Scientists are focusing on Phytotherapy. This computational study aimed to elucidate the antioxidant activity of Phytol by utilizing molecular docking. The objective of the current research is to predict the Lipinski rule of 5 for Phytol. To examine the ADMET properties of Phytol. To analyse the protein-ligand interaction of Phytol with ROS proteins like Superoxide dismutase (PDB ID:1SPD_A), Catalase (PDB ID:1QQW_A), Glutathione peroxidase (PDB ID:2HE3_A), Peroxiredoxin (PDB ID:1OC3_A). The results of the in-silico studies infer that Phytol follows the Lipinski rule of 5, having a higher binding affinity with catalase protein and better hydrogen bond interactions with Superoxide dismutase and Glutathione peroxidase. The current study provides evidence that Phytol reduces oxidative stress. However, additional in-vitro and in-vivo research are needed to understand the prediction process.

References:

[1].   GBD, 2021, Diabetes Collaborators, 2023, Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet (London, England), 402(10397), 203–234. https://doi.org/10.1016/S0140-6736(23)01301-6.

[2].   Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal35(8), 1007-1013.

[3].   Kharroubi, A. T., & Darwish, H. M., 2015, Diabetes mellitus: The epidemic of the century. World Journal of Diabetes,6(6),850–867. https://doi.org/10.4239/wjd.v6.i6.850.

[4].   Baynes, J. W., & Thorpe, S. R., 1999, Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes48(1), 1–9. https://doi.org/10.2337/diabetes.48.1.1

[5].   Sruthi, M. A., Mani, G., Ramakrishnan, M., & Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry33(1), 82-88.

[6].   Navrot, N., Rouhier, N., Gelhaye, E., & Jacquot, J. P., 2007, Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum129(1), 185-195.

[7].   Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F., 2004, Reactive oxygen gene network of plants. Trends in Plant Science9(10), 490–498. https://doi.org/10.1016/j.tplants.2004.08.009.

[8].   Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research13(6), 704-713.

[9].   Li, G. Q., Kam, A., Wong, K. H., Zhou, X., Omar, E. A., Alqahtani, A., Li, K. M., Razmovski-Naumovski, V., & Chan, K., 2012, Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology771, 396–413. https://doi.org/10.1007/978-1-4614-5441-0_28.

[10].  Kazeem, M. I., & Davies, T. C., 2016, Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. Journal of Functional Foods20, 122-138.

[11].  Krishnan, R. P., Pandiar, D., Ramani, P., & Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery126(4), 102120.

[12].  Reshma Rajan, R. R., Mahima Vedi, M. V., Badrinathan Sridharan, B. S., Himaja, M., Sabina, E. P., & Raj, N. A. N., 2014, In vitro and in vivo study on the effect of Scoparia dulcis in inhibiting the growth of urinary crystals. Internatinal Journal of Phytomedicine 6, 617-624.

[13].  Pazhani, J., Chanthu, K., Jayaraman, S., & Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology27(4), 649-654.

[14].  Brown, P. J., Mei, G., Gibberd, F. B., Burston, D., Mayne, P. D., McClinchy, J. E., & Sidey, M., 1993, Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease. Journal of Human Nutrition and Dietetics, 6(4), 295-305.

[15].  Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Chandra Shill, M., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., Yeung, A. W. K.,Atanasov, A. G., 2018, Phytol: A review of biomedical activities. Food and chemical toxicology: An International Journal Published for the British Industrial Biological Research Association, 121, 82–94. https://doi.org/10.1016/j.fct.2018.08.032.

[16].  Fathima, J. S., Jayaraman, S., Sekar, R., & Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology, 1-10.

[17].  Eliza, J., Daisy, P., & Ignacimuthu, S., 2010, Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chemico-Biological Interactions, 188(3), 467–472. https://doi.org/10.1016/j.cbi.2010.08.002.

[18].  Brooijmans, N., & Kuntz, I. D., 2003, Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure, 32, 335–373. https://doi.org/10.1146/annurev.biophys.32.110601.142532.

[19].  Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J., 2004, Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549.

[20].  Pari, L., & Latha, M., 2004, Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats. BMC Complementary and Alternative Medicine, 4, 16. https://doi.org/10.1186/1472-6882-4-16.

[21].  Lin, H. D., Lee, Y. C., Chiang, C. Y., Lin, Y. J., Shih, C. Y., Tsai, R. K., Lin, P. Y., Lin, S. Z., Ho, T. J., & Huang, C. Y., 2023, Protective effects of Scoparia dulcis L. extract on high glucose-induced injury in human retinal pigment epithelial cells. Frontiers in Nutrition, 10, 1085248. https://doi.org/10.3389/fnut.2023.1085248.

[22].  Sivasankarapillai, V. S., Krishnamoorthy, N., Eldesoky, G. E., Wabaidur, S. M., Islam, M. A., Dhanusuraman, R., & Ponnusamy, V. K., 2022, One-pot green synthesis of ZnO nanoparticles using Scoparia dulcis plant extract for antimicrobial and antioxidant activities. Applied Nanoscience, 1–11.Advance online publication. https://doi.org/10.1007/s13204-022-02610-7.

[23].  Mishra, M. R., Mishra, A., Pradhan, D. K., Panda, A. K., Behera, R. K., & Jha, S., 2013, Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn. Indian Journal of Pharmaceutical Sciences75(5), 610–614.

[24].  Moniruzzaman, M., Atikur Rahman, M., & Ferdous, A., 2015, Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn. Evidence-based complementary and alternative medicine: eCAM, 2015, 873954. https://doi.org/10.1155/2015/873954.

[25].  Benarfa, A., Gourine, N., Mahfoudi, R., Harrat, M., & Yousfi, M., 2019, Effect of Seasonal and Regional Variations on Phenolic Compounds of Deverra scoparia (Flowers/Seeds) Methanolic Extract and the Evaluation of Its in Vitro Antioxidant Activity. Chemistry & Biodiversity, 16(11), e1900420. https://doi.org/10.1002/cbdv.201900420.

[26].  Coulibaly, A. Y., Kiendrebeogo, M., Kehoe, P. G., Sombie, P. A., Lamien, C. E., Millogo, J. F., & Nacoulma, O. G., 2011, Antioxidant and anti-inflammatory effects of Scoparia dulcis L. Journal of Medicinal Food14(12), 1576–1582. https://doi.org/10.1089/jmf.2010.0191.

[27].  Yasothkumar, D., Ramani, P., Jayaraman, S., Ramalingam, K., & Tilakaratne, W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology18(1), 28.

[28].  Sagar, S., Ramani, P., Moses, S., Gheena, S., & Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology, 1-10.