Glycemic Gums: Unveiling the Phytochemical Connection Between Diabetes and Oral Health: A Review

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art012

Authors : Sridevi Gopathy, Arockya Stafi Arockyasamy, L. Durga, Rajagopal P

Abstract:

Hyperglycemia, a pathological condition, predominantly defines diabetes mellitus, a persistent and complex metabolic dysfunction. It has a significant impact on oral health, as seen by conditions including periodontal disease, xerostomia (dry mouth), and increased susceptibility to infections. The intricate bidirectional relationship that exists between oral health and the metabolic disorder diabetes has been thoroughly documented, where it has been observed with poor oral hygiene worsening glycemic management and vice versa. Recently, there has been a change in focus toward the utilization of phytochemicals, the bioactive substances found in plants, as an additional treatment strategy for addressing issues related to dental health and diabetes. Phytochemicals exhibit antimicrobial, anti-inflammatory, and antioxidant characteristics that are critical for battling oral infections as well as reducing the inflammatory processes associated with diabetic periodontitis. Evidence shows that these substances contribute to enhanced insulin sensitivity and glycemic management, in addition to their beneficial effects on dental health, such as suppressing inflammation and oxidative stress. This review investigates some complex interactions between diabetes and oral hygiene, as well as the role of inflammatory mediators, cellular oxidative stress, and dysfunction of the salivary gland. It explores the dual role of phytochemicals such as alkaloids, flavonoids, tannins, reseveratol, and saponins in the context of oral health care for diabetic individuals.

References:

[1].   Lecube, A., 2024, Impact of obesity and diabetes on health and cardiovascular disease. Atencion Primaria, 56(12), 103045-103045.

[2].   Mekala, K. C., & Bertoni, A. G., 2020, Epidemiology of diabetes mellitus. In Transplantation, bioengineering, and regeneration of the endocrine pancreas, pp. 49-58, Academic Press.

[3].   Nayee, S., Ormond, M., Sanderson, J. D., & Escudier, M. P., 2024, Disorders of the mouth. Medicine.

[4].   Yasothkumar, D., Ramani, P., Jayaraman, S., Ramalingam, K., & Tilakaratne, W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology, 18(1), 28.

[5].   Stoopler, E. T., Villa, A., Bindakhil, M., Díaz, D. L. O., & Sollecito, T. P., 2024, Common oral conditions: a review. JAMA, 331(12), 1045-1054.

[6].   Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6), 704-713.

[7].   Hessain, D., Dalsgaard, E. M., Norman, K., Sandbæk, A., & Andersen, A., 2023, Oral health and type 2 diabetes in a socioeconomic perspective. Primary Care Diabetes, 17(5), 466-472. https://doi.org/10.1016/j.pcd.2023.07.001

[8].   Krishnan, R. P., Pandiar, D., Ramani, P., & Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery, 126(4), 102120.

[9].   Pazhani, J., Chanthu, K., Jayaraman, S., & Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology, 27(4), 649-654.

[10].  Yucel-Lindberg, T., & Båge, T., 2013, Inflammatory mediators in the pathogenesis of periodontitis. Expert Reviews in Molecular Medicine, 15, e7. https://doi.org/10.1017/erm.2013.8

[11].  Li, S., Li, H., Kong, H., Wu, S. Y., Cheng, C. K., & Xu, J., 2023, Endogenous and microbial biomarkers for periodontitis and type 2 diabetes mellitus. Frontiers in Endocrinology, 14, 1292596. https://doi.org/10.3389/fendo.2023.1292596

[12].  Torrungruang, K., Ongphiphadhanakul, B., Jitpakdeebordin, S., & Sarujikumjornwatana, S., 2018, Mediation analysis of systemic inflammation on the association between periodontitis and glycaemic status. Journal of Clinical Periodontology, 45(5), 548-556. https://doi.org/10.1111/jcpe.12884

[13].  Arshad, R., Ismail, W. A., Zara, B., Naseer, R., Minhas, S., Ansari, M., & Alam, M. K., 2022, Salivary MMP-9 levels in chronic periodontitis patients with type-II diabetes mellitus. Molecules, 27(7), 2174. https://doi.org/10.3390/molecules27072174

[14].  Singh, H., Singh, R., Singh, A., Singh, H., Singh, G., Kaur, S., & Singh, B., 2024, Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Archives of Physiology and Biochemistry, 130(6), 616-641. https://doi.org/10.1080/13813455.2023.2243651

[15].  Tang, L., Li, T., Chang, Y., Wang, Z., Li, Y., Wang, F., & Sui, L., 2022, Diabetic oxidative stress-induced telomere damage aggravates periodontal bone loss in periodontitis. Biochemical and Biophysical Research Communications, 614, 22-28. https://doi.org/10.1016/j.bbrc.2022.04.039

[16].  Pasupuleti, M. K., Nagate, R. R., Alqahtani, S. M., Penmetsa, G. S., Gottumukkala, S. N., & Ramesh, K. S. V., 2023, Role of medicinal herbs in periodontal therapy: a systematic review. Journal of International Society of Preventive and Community Dentistry, 13(1), 9-16. https://doi.org/10.4103/jispcd.jispcd_210_22

[17].  Fathima, J. S., Jayaraman, S., Sekar, R., & Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology, 1-10.

[18].  Sen, D. B., Balaraman, R., Sen, A. K., Zanwar, A. S., Greeshma, K. P., & Maheshwari, R. A., 2023, Anti-diabetic activity of herbal remedies. Journal of Natural Remedies, 373-381. https://doi.org/10.18311/jnr/2023/32182

[19].  Sivakumar, A., Thanu, A. S., Vishnumukkala, T., Ksv, A. B. G., Shetty, J. K., Jagadeesan, S., & Gopalakrishna, P. K., 2024, Management of diabetes mellitus using medicinal plants: A review. Bioinformation, 20(7), 705.https://doi.org/10.6026/973206300200705

[20].  Djannah, F., Rahaju, A. S., Kadriyan, H., Triani, E., Trianto, H. F., & Zainul, R., 2024, Black Garlic for the treatment of Tuberculosis and Diabetes mellitus. Research Journal of Pharmacy and Technology, 17(3), 1282-1288. https://doi.org/10.52711/0974-360X.2024.00201

[21].  Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), 1007-1013.

[22].  Muhammad, I., Rahman, N., Nishan, U., & Shah, M., 2021, Antidiabetic activities of alkaloids isolated from medicinal plants. Brazilian Journal of Pharmaceutical Sciences, 57, e19130. https://doi.org/10.1590/s2175-97902020000419130

[23].  Behl, T., Gupta, A., Albratty, M., Najmi, A., Meraya, A. M., Alhazmi, H. A., & Bungau, S. G., 2022, Alkaloidal phytoconstituents for diabetes management: exploring the unrevealed potential. Molecules, 27(18), 5851.

[24].  Ajebli, M., Khan, H., & Eddouks, M., 2021, Natural alkaloids and diabetes mellitus: A review. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 21(1), 111-130. https://doi.org/10.2174/1871530320666200821124817

[25].  Sruthi, M. A., Mani, G., Ramakrishnan, M., & Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry, 33(1), 82-88.

[26].  Mathew, J. E., Jacob, J. J., & Kalra, S., 2021, Periodontitis management in diabetes care. JPMA. The Journal of the Pakistan Medical Association, 71(8), 2097-2099.

[27].  Mohammadian Haftcheshmeh, S., & Momtazi‐Borojeni, A. A., 2021, Berberine as a promising natural compound for the treatment of periodontal disease: A focus on anti‐inflammatory properties. Journal of Cellular and Molecular Medicine, 25(24), 11333-11337. https://doi.org/10.1111/jcmm.17019

[28].  Zhang, L. N., Wang, X. X., Wang, Z., Li, K. Y., Xu, B. H., & Zhang, J., 2019, Berberine improves advanced glycation end products-induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β-catenin pathway. Molecular Medicine Reports, 19(6), 5440-5452. https://doi.org/10.3892/mmr.2019.10193

[29].  Kumar, A., Aswal, S., Semwal, R. B., Chauhan, A., Joshi, S. K., & Semwal, D. K., 2019, Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach. Phytochemistry Reviews, 18(5), 1277-1298. https://doi.org/10.1007/s11101-019-09648-6

[30].  Huang, L. J., Lan, J. X., Wang, J. H., Huang, H., Lu, K., Zhou, Z. N., & Hou, W., 2024, Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomedicine & Pharmacotherapy, 173, 116406. https://doi.org/10.1016/j.biopha.2024.116406

[31].  Aljubouri, E. A., & Alaubydi, M. A., 2023, Investigation of the Association of Oral Infections with Diabetes Mellitus. Iraqi Journal of Science, 4427-4435. https://doi.org/10.24996/ijs.2023.64.9.12

[32].  Wahab, A., Batool, F., Muhammad, M., Zaman, W., Mikhlef, R. M., & Naeem, M., 2023, Current knowledge, research progress, and future prospects of phyto-synthesized nanoparticles interactions with food crops under induced drought stress. Sustainability, 15(20), 14792. https://doi.org/10.4018/978-1-4666-9494-1.ch013

[33].  Horvat, A., Vlašić, I., Štefulj, J., Oršolić, N., & Jazvinšćak Jembrek, M., 2023, Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life, 13(12), 2291. https://doi.org/10.3390/life13122291

[34].  Sagar, S., Ramani, P., Moses, S., Gheena, S., & Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology, 1-10.

[35].  Ren, J. I. E., Lu, Y., Qian, Y., Chen, B., Wu, T. A. O., & Ji, G., 2019, Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759-2776. https://doi.org/10.3892/etm.2019.7886

[36].  Shahbaz, M., Imran, M., Momal, U., Naeem, H., Alsagaby, S. A., Al Abdulmonem, W., & Jbawi, E. A., 2023, Potential effect of kaempferol against various malignancies: recent advances and perspectives. Food and Agricultural Immunology, 34(1), 2265690. https://doi.org/10.1080/09540105.2023.2265690

[37].  Homayouni, F., Haidari, F., Hedayati, M., Zakerkish, M., & Ahmadi, K., 2018, Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial. Phytotherapy Research, 32(6), 1073-1079. https://doi.org/10.1002/ptr.6046

[38].  Huang, C. Y., Ng, M. Y., Lin, T., Liao, Y. W., Huang, W. S., Hsieh, C. W., & Chen, C. J., 2024, Quercetin ameliorates advanced glycation end product-induced wound healing impairment and inflammaging in human gingival fibroblasts. Journal of Dental Sciences, 19(1), 268-275. https://doi.org/10.1016/j.jds.2023.04.014

[39].  Mooney, E. C., Holden, S. E., Xia, X. J., Li, Y., Jiang, M., Banson, C. N., & Sahingur, S. E., 2021, Quercetin preserves oral cavity health by mitigating inflammation and microbial dysbiosis. Frontiers in Immunology, 12, 774273. https://doi.org/10.3389/fimmu.2021.774273

[40].  Liu, C., Zhang, S., Bai, H., Zhang, Y., Jiang, Y., Yang, Z., & Ding, Y., 2022, Soy isoflavones alleviate periodontal destruction in ovariectomized rats. Journal of Periodontal Research, 57(3), 519-532. https://doi.org/10.1111/jre.12981

[41].  Mistry, P. S., Chorawala, M. R., Sivamaruthi, B. S., Prajapati, B. G., Kumar, A., & Chaiyasut, C., 2024, The Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated Complications. Current Diabetes Reviews. https://doi.org/10.2174/0115733998322754240802063730

[42].  Mao, T., Akshit, F. N. U., & Mohan, M. S., 2023, Effects of anthocyanin supplementation in diet on glycemic and related cardiovascular biomarkers in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Frontiers in Nutrition, 10, 1199815. https://doi.org/10.3389/fnut.2023.1199815

[43].  Al-Janabi, A. A. H. S., 2023, A positive or negative connection of diabetes mellitus to the oral microbiota. The Eurasian journal of medicine, 55(1), 83. https://doi.org/10.5152/eurasianjmed.2023.21164

[44].  Kováč, J., Slobodníková, L., Trajčíková, E., Rendeková, K., Mučaji, P., Sychrová, A., & Bittner Fialová, S., 2022, Therapeutic potential of flavonoids and tannins in management of oral infectious diseases—A review. Molecules, 28(1), 158. https://doi.org/10.3390/molecules28010158

[45].  Su, K., Li, J., Wu, X., Deng, D., Gu, H., Sun, Y., & Wu, K., 2024, One‐Step Synthesis of Hydrogel Adhesive with Acid‐Responsive Tannin Release for Diabetic Oral Mucosa Defects Healing. Advanced Healthcare Materials, 13(9), 2303252. https://doi.org/10.1002/adhm.202303252

[46].  Bhattarai, K. R., Lee, S. W., Kim, S. H., Kim, H. R., & Chae, H. J., 2017, Ixeris dentata extract regulates salivary secretion through the activation of aquaporin-5 and prevents diabetes-induced xerostomia. Journal of experimental pharmacology, 81-91. https://doi.org/10.2147/jep.s141807

[47].  E Akpotu, A., I Ghasi, S., O Ike, A., F Akhigbe, O., A Amadi, M., OJ Ajah, D., & U Ukiwa, M., 2024, Reducing Sugar, Alkaloid and Tannin from Dryopteris dilatata Fractions Modulates Diabetogenic and Oxidative Stress Activity on Alloxan Induced Diabetic Rats. Asian Journal of Research in Medical and Pharmaceutical Sciences, 13(3), 21-33. https://doi.org/10.9734/ajrimps/2024/v13i3259

[48].  Gandhi, G. R., Antony, P. J., Ceasar, S. A., Vasconcelos, A. B. S., Montalvão, M. M., Farias de Franca, M. N., & Gan, R. Y., 2024, Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Critical Reviews in Food Science and Nutrition, 64(2), 280-310. https://doi.org/10.1080/10408398.2022.2106179

[49].  Zare Javid, A., Hormoznejad, R., Yousefimanesh, H. A., Zakerkish, M., Haghighi‐zadeh, M. H., Dehghan, P., & Ravanbakhsh, M., 2017, The impact of resveratrol supplementation on blood glucose, insulin, insulin resistance, triglyceride, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Phytotherapy Research, 31(1), 108-114. https://doi.org/10.1002/ptr.5737

[50].  Liu, F., Smith, A. D., Wang, T. T., Pham, Q., Yang, H., & Li, R. W., 2023, Ellagitannin punicalagin disrupts the pathways related to bacterial growth and affects multiple pattern recognition receptor signalling by acting as a selective histone deacetylase inhibitor. Journal of Agricultural and Food Chemistry, 71(12), 5016-5026. https://doi.org/10.1021/acs.jafc.2c08738

[51].  Javid, A. Z., Hormoznejad, R., Allah Yousefimanesh, H., Haghighi-Zadeh, M. H., & Zakerkish, M., 2019, Impact of resveratrol supplementation on inflammatory, antioxidant, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(4), 2769-2774. https://doi.org/10.1016/j.dsx.2019.07.042

[52].  Tan, Y., Feng, J., Xiao, Y., & Bao, C., 2022, Grafting resveratrol onto mesoporous silica nanoparticles towards efficient sustainable immunoregulation and insulin resistance alleviation for diabetic periodontitis therapy. Journal of Materials Chemistry B, 10(25), 4840-4855. https://doi.org/10.1039/d2tb00484d

[53].  Zare Javid, A., Hormoznejad, R., Yousefimanesh, H. A., Zakerkish, M., Haghighi‐zadeh, M. H., Dehghan, P., & Ravanbakhsh, M., 2017, The impact of resveratrol supplementation on blood glucose, insulin, insulin resistance, triglyceride, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Phytotherapy Research, 31(1), 108-114. https://doi.org/10.1002/ptr.5737

[54].  Nowak, E., Psiuk, D., Rocka, A., Dycha, N., Jasielski, P., Jasielska, F., & Rocka, E., 2022, Resveratrol impacts health in patients with diabetes mellitus and other metabolic conditions. Journal of Education, Health and Sport, 12(11), 341-346. https://doi.org/10.12775/jehs.2022.12.11.045

[55].  Yu, X., Jia, Y., & Ren, F., 2024, Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Frontiers in Nutrition, 11, 1408651. https://doi.org/10.3389/fnut.2024.1408651

[56].  Hwang, S. M., Kim, T. Y., Kim, A., Kim, Y. G., Park, J. W., Lee, J. M., & Suh, J. Y., 2024, Resveratrol facilitates bone formation in high-glucose conditions. Frontiers in Physiology, 15, 1347756. https://doi.org/10.3389/fphys.2024.1347756

[57].  Miyashiro, C. A., Bernegossi, J., Bonifácio, B. V., de Toledo, L. G., Ramos, M. A. S., Bauab, T. M., & Chorilli, M., 2020, Development and characterization of a novel liquid crystalline system containing sodium alginate for incorporation of trans-resveratrol intended for treatment of buccal candidiasis. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 75(5), 179-185.

[58].  Reis, F. N., Câmara, J. V. F., Dionizio, A., Araujo, T. T., da Silva, N. D. G., Levy, F. M., & Buzalaf, M. A. R., 2024, Increase in plasma resveratrol levels and in acid-resistant proteins in the acquired enamel pellicle after use of resveratrol-containing orodispersible tablets. Journal of Dentistry, 143, 104876. https://doi.org/10.1016/j.jdent.2024.104876

[59].  Reis, F. N., Câmara, J. V. F., Dionizio, A., Araujo, T. T., da Silva, N. D. G., Levy, F. M., & Buzalaf, M. A. R., 2024, Increase in plasma resveratrol levels and in acid-resistant proteins in the acquired enamel pellicle after use of resveratrol-containing orodispersible tablets. Journal of Dentistry, 143, 104876. https://doi.org/10.22376/ijlpr.2023.13.6.l349-l357

[60].  Pashapour, S., Saberivand, A., Khaki, A. A., & Saberivand, M., 2023, Effect of saponin on spermatogenesis and testicular structure in streptozotocin-induced diabetic mice. In Veterinary Research Forum (Vol. 14, No. 11, p. 601). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. https://doi.org/10.30466/vrf.2023.1986019.3727

[61].  Tang, P., Liu, S., Zhang, J., Ai, Z., Hu, Y., Cui, L., & Wang, Y., 2024, Ginsenosides as dietary supplements with immunomodulatory effects: a review. Applied Biological Chemistry, 67(1), 27. https://doi.org/10.1186/s13765-024-00881-y

[62].  Chen, J., Ullah, H., Zheng, Z., Gu, X., Su, C., Xiao, L., Wu, X., Xiong, F., Li, Q., & Zha, L., 2020, Soyasaponins reduce inflammation by downregulating MyD88 expression and suppressing the recruitments of TLR4 and MyD88 into lipid rafts. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2864-2

[63].  Kuzu, T. E., Ozturk, K., Gurgan, C. A., Yay, A., Goktepe, O., & Kantarcı, A., 2023, Anti-inflammatory and pro-regenerative effects of a monoterpene glycoside on experimental periodontitis in a rat model of diabetes. Journal of Periodontal Research, 58(5), 932–938. https://doi.org/10.1111/jre.13151

[64].  Pallod, S., Aguilera Olvera, R., Ghosh, D., Rai, L., Brimo, S., DeCambra, W., Sant, H. G., Ristich, E., Singh, V., Abedin, M. R., Chang, N., Yarger, J. L., Lee, J. K., Kilbourne, J., Yaron, J. R., Haydel, S. E., & Rege, K., 2024, Skin repair and infection control in diabetic, obese mice using bioactive laser-activated sealants. Biomaterials, 311, 122668. https://doi.org/10.1016/j.biomaterials.2024.122668

[65].  Antolak, H., Mizerska, U., Berłowska, J., Otlewska, A., & Kręgiel, D., 2018, Quillaja saponaria saponins with potential to enhance the effectiveness of disinfection processes in the beverage industry. Applied Sciences, 8(3), 368. https://doi.org/10.3390/app8030368