Glycemic Gums: Unveiling the Phytochemical Connection Between Diabetes and Oral Health: A Review
Abstract:
Hyperglycemia, a pathological
condition, predominantly defines diabetes mellitus, a persistent and complex
metabolic dysfunction. It has a significant impact on oral health, as seen by conditions
including periodontal disease, xerostomia (dry mouth), and increased
susceptibility to infections. The intricate bidirectional relationship that
exists between oral health and the metabolic disorder diabetes has been
thoroughly documented, where it has been observed with poor oral hygiene
worsening glycemic management and vice versa. Recently, there has been a change
in focus toward the utilization of phytochemicals, the bioactive substances
found in plants, as an additional treatment strategy for addressing issues
related to dental health and diabetes. Phytochemicals exhibit antimicrobial,
anti-inflammatory, and antioxidant characteristics that are critical for
battling oral infections as well as reducing the inflammatory processes
associated with diabetic periodontitis. Evidence shows that these substances
contribute to enhanced insulin sensitivity and glycemic management, in addition
to their beneficial effects on dental health, such as suppressing inflammation
and oxidative stress. This review investigates some complex interactions
between diabetes and oral hygiene, as well as the role of inflammatory
mediators, cellular oxidative stress, and dysfunction of the salivary gland. It
explores the dual role of phytochemicals such as alkaloids, flavonoids,
tannins, reseveratol, and saponins in the context of oral health care for
diabetic individuals.
References:
[1]. Lecube, A., 2024, Impact of obesity and
diabetes on health and cardiovascular disease. Atencion Primaria, 56(12),
103045-103045.
[2]. Mekala, K. C., & Bertoni, A. G., 2020,
Epidemiology of diabetes mellitus. In Transplantation, bioengineering, and
regeneration of the endocrine pancreas, pp. 49-58, Academic Press.
[3]. Nayee, S., Ormond, M., Sanderson, J. D.,
& Escudier, M. P., 2024, Disorders of the mouth. Medicine.
[4]. Yasothkumar, D., Ramani, P., Jayaraman, S.,
Ramalingam, K., & Tilakaratne, W. M., 2024, Expression Profile of
Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and
Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and
Neck Pathology, 18(1), 28.
[5]. Stoopler, E. T., Villa, A., Bindakhil, M.,
Díaz, D. L. O., & Sollecito, T. P., 2024, Common oral conditions: a
review. JAMA, 331(12), 1045-1054.
[6]. Jayaraman, S., Natarajan, S. R.,
Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer
mechanisms of calotropin: Insights into cell growth inhibition, cell cycle
arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal
of Oral Biology and Craniofacial Research, 13(6), 704-713.
[7]. Hessain, D., Dalsgaard, E. M., Norman, K.,
Sandbæk, A., & Andersen, A., 2023, Oral health and type 2 diabetes in a
socioeconomic perspective. Primary Care Diabetes, 17(5),
466-472. https://doi.org/10.1016/j.pcd.2023.07.001
[8]. Krishnan, R. P., Pandiar, D., Ramani, P.,
& Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and
oral squamous cell carcinoma using next generation sequencing. Journal
of Stomatology, Oral and Maxillofacial Surgery, 126(4), 102120.
[9]. Pazhani, J., Chanthu, K., Jayaraman, S.,
& Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell
carcinoma and oral leukoplakia using ELISA. Journal of Oral and
Maxillofacial Pathology, 27(4), 649-654.
[10]. Yucel-Lindberg, T., & Båge, T., 2013,
Inflammatory mediators in the pathogenesis of periodontitis. Expert
Reviews in Molecular Medicine, 15, e7. https://doi.org/10.1017/erm.2013.8
[11]. Li, S., Li, H., Kong, H., Wu, S. Y., Cheng,
C. K., & Xu, J., 2023, Endogenous and microbial biomarkers for
periodontitis and type 2 diabetes mellitus. Frontiers in Endocrinology, 14,
1292596. https://doi.org/10.3389/fendo.2023.1292596
[12]. Torrungruang, K., Ongphiphadhanakul, B.,
Jitpakdeebordin, S., & Sarujikumjornwatana, S., 2018, Mediation analysis of
systemic inflammation on the association between periodontitis and glycaemic
status. Journal of Clinical Periodontology, 45(5), 548-556. https://doi.org/10.1111/jcpe.12884
[13]. Arshad, R., Ismail, W. A., Zara, B.,
Naseer, R., Minhas, S., Ansari, M., & Alam, M. K., 2022, Salivary MMP-9
levels in chronic periodontitis patients with type-II diabetes mellitus. Molecules, 27(7),
2174. https://doi.org/10.3390/molecules27072174
[14]. Singh, H., Singh, R., Singh, A., Singh, H.,
Singh, G., Kaur, S., & Singh, B., 2024, Role of oxidative stress in
diabetes-induced complications and their management with antioxidants. Archives
of Physiology and Biochemistry, 130(6), 616-641. https://doi.org/10.1080/13813455.2023.2243651
[15]. Tang, L., Li, T., Chang, Y., Wang, Z., Li,
Y., Wang, F., & Sui, L., 2022, Diabetic oxidative stress-induced telomere
damage aggravates periodontal bone loss in periodontitis. Biochemical
and Biophysical Research Communications, 614, 22-28. https://doi.org/10.1016/j.bbrc.2022.04.039
[16]. Pasupuleti, M. K., Nagate, R. R.,
Alqahtani, S. M., Penmetsa, G. S., Gottumukkala, S. N., & Ramesh, K. S. V.,
2023, Role of medicinal herbs in periodontal therapy: a systematic
review. Journal of International Society of Preventive and Community
Dentistry, 13(1), 9-16. https://doi.org/10.4103/jispcd.jispcd_210_22
[17]. Fathima, J. S., Jayaraman, S., Sekar, R.,
& Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment
of oral premalignant disorders. Odontology, 1-10.
[18]. Sen, D. B., Balaraman, R., Sen, A. K.,
Zanwar, A. S., Greeshma, K. P., & Maheshwari, R. A., 2023, Anti-diabetic
activity of herbal remedies. Journal of Natural Remedies, 373-381. https://doi.org/10.18311/jnr/2023/32182
[19]. Sivakumar, A., Thanu, A. S., Vishnumukkala,
T., Ksv, A. B. G., Shetty, J. K., Jagadeesan, S., & Gopalakrishna, P. K.,
2024, Management of diabetes mellitus using medicinal plants: A review. Bioinformation, 20(7),
705.https://doi.org/10.6026/973206300200705
[20]. Djannah, F., Rahaju, A. S., Kadriyan, H.,
Triani, E., Trianto, H. F., & Zainul, R., 2024, Black Garlic for the
treatment of Tuberculosis and Diabetes mellitus. Research Journal
of Pharmacy and Technology, 17(3), 1282-1288. https://doi.org/10.52711/0974-360X.2024.00201
[21]. Jayaraman, S., Natarajan, S. R., Ponnusamy,
B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of
beta sitosterol: Augmenting the suppression of oral cancer cells through
extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8),
1007-1013.
[22]. Muhammad, I., Rahman, N., Nishan, U., &
Shah, M., 2021, Antidiabetic activities of alkaloids isolated from medicinal
plants. Brazilian Journal of Pharmaceutical Sciences, 57,
e19130. https://doi.org/10.1590/s2175-97902020000419130
[23]. Behl, T., Gupta, A., Albratty, M., Najmi,
A., Meraya, A. M., Alhazmi, H. A., & Bungau, S. G., 2022, Alkaloidal
phytoconstituents for diabetes management: exploring the unrevealed
potential. Molecules, 27(18), 5851.
[24]. Ajebli, M., Khan, H., & Eddouks, M.,
2021, Natural alkaloids and diabetes mellitus: A review. Endocrine,
Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug
Targets-Immune, Endocrine & Metabolic Disorders), 21(1), 111-130. https://doi.org/10.2174/1871530320666200821124817
[25]. Sruthi, M. A., Mani, G., Ramakrishnan, M.,
& Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori
infection in children: An RT‐PCR study. International Journal of
Paediatric Dentistry, 33(1), 82-88.
[27].
Mohammadian
Haftcheshmeh, S., & Momtazi‐Borojeni, A. A., 2021, Berberine as a promising
natural compound for the treatment of periodontal disease: A focus on
anti‐inflammatory properties. Journal of Cellular and Molecular
Medicine, 25(24), 11333-11337. https://doi.org/10.1111/jcmm.17019
[28].
Zhang,
L. N., Wang, X. X., Wang, Z., Li, K. Y., Xu, B. H., & Zhang, J., 2019,
Berberine improves advanced glycation end products-induced osteogenic
differentiation responses in human periodontal ligament stem cells through the
canonical Wnt/β-catenin pathway. Molecular Medicine Reports, 19(6),
5440-5452. https://doi.org/10.3892/mmr.2019.10193
[29].
Kumar,
A., Aswal, S., Semwal, R. B., Chauhan, A., Joshi, S. K., & Semwal, D. K.,
2019, Role of plant-derived alkaloids against diabetes and diabetes-related
complications: a mechanism-based approach. Phytochemistry Reviews, 18(5),
1277-1298. https://doi.org/10.1007/s11101-019-09648-6
[30].
Huang,
L. J., Lan, J. X., Wang, J. H., Huang, H., Lu, K., Zhou, Z. N., & Hou, W.,
2024, Bioactivity and mechanism of action of sanguinarine and its derivatives
in the past 10 years. Biomedicine & Pharmacotherapy, 173,
116406. https://doi.org/10.1016/j.biopha.2024.116406
[31].
Aljubouri,
E. A., & Alaubydi, M. A., 2023, Investigation of the Association of Oral
Infections with Diabetes Mellitus. Iraqi Journal of Science,
4427-4435. https://doi.org/10.24996/ijs.2023.64.9.12
[32]. Wahab, A., Batool, F., Muhammad, M., Zaman,
W., Mikhlef, R. M., & Naeem, M., 2023, Current knowledge, research
progress, and future prospects of phyto-synthesized nanoparticles interactions
with food crops under induced drought stress. Sustainability, 15(20),
14792. https://doi.org/10.4018/978-1-4666-9494-1.ch013
[33]. Horvat, A., Vlašić, I., Štefulj, J.,
Oršolić, N., & Jazvinšćak Jembrek, M., 2023, Flavonols as a Potential
Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes:
Evidence from Preclinical Studies. Life, 13(12), 2291. https://doi.org/10.3390/life13122291
[34]. Sagar, S., Ramani, P., Moses, S., Gheena,
S., & Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25
dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology,
1-10.
[35]. Ren, J. I. E., Lu, Y., Qian, Y., Chen, B.,
Wu, T. A. O., & Ji, G., 2019, Recent progress regarding kaempferol for the
treatment of various diseases. Experimental and Therapeutic Medicine, 18(4),
2759-2776. https://doi.org/10.3892/etm.2019.7886
[36]. Shahbaz, M., Imran, M., Momal, U., Naeem,
H., Alsagaby, S. A., Al Abdulmonem, W., & Jbawi, E. A., 2023, Potential
effect of kaempferol against various malignancies: recent advances and
perspectives. Food and Agricultural Immunology, 34(1),
2265690. https://doi.org/10.1080/09540105.2023.2265690
[37]. Homayouni, F., Haidari, F., Hedayati, M.,
Zakerkish, M., & Ahmadi, K., 2018, Blood pressure lowering and
anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized
double‐blind controlled clinical trial. Phytotherapy Research, 32(6),
1073-1079. https://doi.org/10.1002/ptr.6046
[38]. Huang, C. Y., Ng, M. Y., Lin, T., Liao, Y.
W., Huang, W. S., Hsieh, C. W., & Chen, C. J., 2024, Quercetin ameliorates
advanced glycation end product-induced wound healing impairment and
inflammaging in human gingival fibroblasts. Journal of Dental Sciences, 19(1),
268-275. https://doi.org/10.1016/j.jds.2023.04.014
[39]. Mooney, E. C., Holden, S. E., Xia, X. J.,
Li, Y., Jiang, M., Banson, C. N., & Sahingur, S. E., 2021, Quercetin
preserves oral cavity health by mitigating inflammation and microbial
dysbiosis. Frontiers in Immunology, 12, 774273. https://doi.org/10.3389/fimmu.2021.774273
[40]. Liu, C., Zhang, S., Bai, H., Zhang, Y.,
Jiang, Y., Yang, Z., & Ding, Y., 2022, Soy isoflavones alleviate
periodontal destruction in ovariectomized rats. Journal of Periodontal
Research, 57(3), 519-532. https://doi.org/10.1111/jre.12981
[41]. Mistry, P. S., Chorawala, M. R.,
Sivamaruthi, B. S., Prajapati, B. G., Kumar, A., & Chaiyasut, C., 2024, The
Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated
Complications. Current Diabetes Reviews. https://doi.org/10.2174/0115733998322754240802063730
[42]. Mao, T., Akshit, F. N. U., & Mohan, M.
S., 2023, Effects of anthocyanin supplementation in diet on glycemic and
related cardiovascular biomarkers in patients with type 2 diabetes: A
systematic review and meta-analysis of randomized controlled trials. Frontiers
in Nutrition, 10, 1199815. https://doi.org/10.3389/fnut.2023.1199815
[43]. Al-Janabi, A. A. H. S., 2023, A positive or
negative connection of diabetes mellitus to the oral microbiota. The
Eurasian journal of medicine, 55(1), 83. https://doi.org/10.5152/eurasianjmed.2023.21164
[44]. Kováč, J., Slobodníková, L., Trajčíková,
E., Rendeková, K., Mučaji, P., Sychrová, A., & Bittner Fialová, S., 2022,
Therapeutic potential of flavonoids and tannins in management of oral
infectious diseases—A review. Molecules, 28(1), 158. https://doi.org/10.3390/molecules28010158
[45]. Su, K., Li, J., Wu, X., Deng, D., Gu, H.,
Sun, Y., & Wu, K., 2024, One‐Step Synthesis of Hydrogel Adhesive with
Acid‐Responsive Tannin Release for Diabetic Oral Mucosa Defects Healing. Advanced
Healthcare Materials, 13(9), 2303252. https://doi.org/10.1002/adhm.202303252
[46]. Bhattarai, K. R., Lee, S. W., Kim, S. H.,
Kim, H. R., & Chae, H. J., 2017, Ixeris dentata extract regulates salivary
secretion through the activation of aquaporin-5 and prevents diabetes-induced
xerostomia. Journal of experimental pharmacology, 81-91. https://doi.org/10.2147/jep.s141807
[47]. E Akpotu, A., I Ghasi, S., O Ike, A., F
Akhigbe, O., A Amadi, M., OJ Ajah, D., & U Ukiwa, M., 2024, Reducing Sugar,
Alkaloid and Tannin from Dryopteris dilatata Fractions Modulates Diabetogenic
and Oxidative Stress Activity on Alloxan Induced Diabetic Rats. Asian
Journal of Research in Medical and Pharmaceutical Sciences, 13(3),
21-33. https://doi.org/10.9734/ajrimps/2024/v13i3259
[48]. Gandhi, G. R., Antony, P. J., Ceasar, S.
A., Vasconcelos, A. B. S., Montalvão, M. M., Farias de Franca, M. N., &
Gan, R. Y., 2024, Health functions and related molecular mechanisms of
ellagitannin-derived urolithins. Critical Reviews in Food Science and
Nutrition, 64(2), 280-310. https://doi.org/10.1080/10408398.2022.2106179
[49]. Zare Javid, A., Hormoznejad, R.,
Yousefimanesh, H. A., Zakerkish, M., Haghighi‐zadeh, M. H., Dehghan, P., &
Ravanbakhsh, M., 2017, The impact of resveratrol supplementation on blood
glucose, insulin, insulin resistance, triglyceride, and periodontal markers in
type 2 diabetic patients with chronic periodontitis. Phytotherapy Research, 31(1),
108-114. https://doi.org/10.1002/ptr.5737
[50]. Liu, F., Smith, A. D., Wang, T. T., Pham,
Q., Yang, H., & Li, R. W., 2023, Ellagitannin punicalagin disrupts the
pathways related to bacterial growth and affects multiple pattern recognition
receptor signalling by acting as a selective histone deacetylase
inhibitor. Journal of Agricultural and Food Chemistry, 71(12),
5016-5026. https://doi.org/10.1021/acs.jafc.2c08738
[51]. Javid, A. Z., Hormoznejad, R., Allah
Yousefimanesh, H., Haghighi-Zadeh, M. H., & Zakerkish, M., 2019, Impact of
resveratrol supplementation on inflammatory, antioxidant, and periodontal
markers in type 2 diabetic patients with chronic periodontitis. Diabetes
& Metabolic Syndrome: Clinical Research & Reviews, 13(4),
2769-2774. https://doi.org/10.1016/j.dsx.2019.07.042
[52]. Tan, Y., Feng, J., Xiao, Y., & Bao, C.,
2022, Grafting resveratrol onto mesoporous silica nanoparticles towards
efficient sustainable immunoregulation and insulin resistance alleviation for
diabetic periodontitis therapy. Journal of Materials Chemistry B, 10(25),
4840-4855. https://doi.org/10.1039/d2tb00484d
[53]. Zare Javid, A., Hormoznejad, R.,
Yousefimanesh, H. A., Zakerkish, M., Haghighi‐zadeh, M. H., Dehghan, P., &
Ravanbakhsh, M., 2017, The impact of resveratrol supplementation on blood
glucose, insulin, insulin resistance, triglyceride, and periodontal markers in
type 2 diabetic patients with chronic periodontitis. Phytotherapy
Research, 31(1), 108-114. https://doi.org/10.1002/ptr.5737
[54]. Nowak, E., Psiuk, D., Rocka, A., Dycha, N.,
Jasielski, P., Jasielska, F., & Rocka, E., 2022, Resveratrol impacts health
in patients with diabetes mellitus and other metabolic conditions. Journal
of Education, Health and Sport, 12(11), 341-346. https://doi.org/10.12775/jehs.2022.12.11.045
[55]. Yu, X., Jia, Y., & Ren, F., 2024,
Multidimensional biological activities of resveratrol and its prospects and
challenges in the health field. Frontiers in Nutrition, 11,
1408651. https://doi.org/10.3389/fnut.2024.1408651
[56]. Hwang, S. M., Kim, T. Y., Kim, A., Kim, Y.
G., Park, J. W., Lee, J. M., & Suh, J. Y., 2024, Resveratrol facilitates
bone formation in high-glucose conditions. Frontiers in Physiology, 15,
1347756. https://doi.org/10.3389/fphys.2024.1347756
[57]. Miyashiro, C. A., Bernegossi, J.,
Bonifácio, B. V., de Toledo, L. G., Ramos, M. A. S., Bauab, T. M., &
Chorilli, M., 2020, Development and characterization of a novel liquid
crystalline system containing sodium alginate for incorporation of trans-resveratrol
intended for treatment of buccal candidiasis. Die Pharmazie-An
International Journal of Pharmaceutical Sciences, 75(5), 179-185.
[58]. Reis, F. N., Câmara, J. V. F., Dionizio,
A., Araujo, T. T., da Silva, N. D. G., Levy, F. M., & Buzalaf, M. A. R.,
2024, Increase in plasma resveratrol levels and in acid-resistant proteins in
the acquired enamel pellicle after use of resveratrol-containing orodispersible
tablets. Journal of Dentistry, 143, 104876. https://doi.org/10.1016/j.jdent.2024.104876
[59]. Reis, F. N., Câmara, J. V. F., Dionizio,
A., Araujo, T. T., da Silva, N. D. G., Levy, F. M., & Buzalaf, M. A. R.,
2024, Increase in plasma resveratrol levels and in acid-resistant proteins in
the acquired enamel pellicle after use of resveratrol-containing orodispersible
tablets. Journal of Dentistry, 143, 104876. https://doi.org/10.22376/ijlpr.2023.13.6.l349-l357
[60]. Pashapour, S., Saberivand, A., Khaki, A.
A., & Saberivand, M., 2023, Effect of saponin on spermatogenesis and
testicular structure in streptozotocin-induced diabetic mice.
In Veterinary Research Forum (Vol. 14, No. 11, p. 601). Faculty of
Veterinary Medicine, Urmia University, Urmia, Iran. https://doi.org/10.30466/vrf.2023.1986019.3727
[61]. Tang, P., Liu, S., Zhang, J., Ai, Z., Hu,
Y., Cui, L., & Wang, Y., 2024, Ginsenosides as dietary supplements with
immunomodulatory effects: a review. Applied Biological Chemistry, 67(1),
27. https://doi.org/10.1186/s13765-024-00881-y
[62]. Chen, J., Ullah, H., Zheng, Z., Gu, X., Su,
C., Xiao, L., Wu, X., Xiong, F., Li, Q., & Zha, L., 2020, Soyasaponins
reduce inflammation by downregulating MyD88 expression and suppressing the
recruitments of TLR4 and MyD88 into lipid rafts. BMC Complementary Medicine
and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2864-2
[63]. Kuzu, T. E., Ozturk, K., Gurgan, C. A.,
Yay, A., Goktepe, O., & Kantarcı, A., 2023, Anti-inflammatory and
pro-regenerative effects of a monoterpene glycoside on experimental
periodontitis in a rat model of diabetes. Journal of Periodontal Research,
58(5), 932–938. https://doi.org/10.1111/jre.13151
[64]. Pallod, S., Aguilera Olvera, R., Ghosh, D.,
Rai, L., Brimo, S., DeCambra, W., Sant, H. G., Ristich, E., Singh, V., Abedin,
M. R., Chang, N., Yarger, J. L., Lee, J. K., Kilbourne, J., Yaron, J. R.,
Haydel, S. E., & Rege, K., 2024, Skin repair and infection control in
diabetic, obese mice using bioactive laser-activated sealants. Biomaterials,
311, 122668. https://doi.org/10.1016/j.biomaterials.2024.122668
[65]. Antolak, H., Mizerska, U., Berłowska, J.,
Otlewska, A., & Kręgiel, D., 2018, Quillaja saponaria saponins
with potential to enhance the effectiveness of disinfection processes in the
beverage industry. Applied Sciences, 8(3), 368. https://doi.org/10.3390/app8030368