Myricetin Anti-diabetic Activity in 3T3 Cells Targeting the Nrf2-Keap Signaling Cascade

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art011

Authors : Jayaraman S, Ramya Murali

Abstract:

The study was aimed at assessing the effects of Myricetin, a potent anti-cancer compound, targets the NRF2-Keap1 pathway in 3T3-L1 fibroblast cells, which is crucial in cancer progression, cell growth, and metastasis. Various assays have demonstrated myricetin's therapeutic potential. Antioxidant properties, confirmed by the DPPH assay, show dose-dependent free radical inhibition, with myricetin achieving 69.98% inhibition at 500 μg/ml (p<0.001). Anti-inflammatory assays reveal significant reductions in inflammatory markers, with inhibition rising to 74.75% at the same concentration (p<0.001). Gene expression studies highlight myricetin's impact on key components of the NRF2/Keap1 pathway, essential for cancer cell survival. In 3T3-L1 cells treated with myricetin, notable changes were observed in mRNA expression levels: IR (0.95±0.05, p<0.001), IL-1β (0.96±0.04, p<0.002), Keap1 (0.9±0.04, p<0.001), Glut4 (0.6±0.04, p<0.002), NRF2 (0.96±0.4, p<0.001), and NFκB (0.94±0.05, p<0.001). These findings suggest myricetin disrupts critical pathways, contributing to reduced inflammation and potential cancer inhibition. The MTT assay further indicates no cytotoxicity after 48 hours, supporting its safety profile. Molecular docking studies reveal strong binding affinities of myricetin to key pathway components, with Keap1 showing the highest affinity (-9.7 kcal/mol), followed by IR (-8 kcal/mol), NFκB (-6.9 kcal/mol), and NRF2 (-6.9 kcal/mol). IL-1β and Glut4 showed affinities of -7.1 and -7.2 kcal/mol, respectively, reinforcing myricetin's role in modulating the NRF2/Keap1 pathway. In summary, myricetin’s antioxidant, anti-inflammatory, and gene-modulatory activities, combined with its strong molecular interactions, position it as a promising therapeutic agent for both cancer and diabetes by modulating key cellular pathways.

References:

[1].   Narasimhan, A., Sampath, S., Jayaraman, S., & Karundevi, B., 2013, Estradiol favors glucose oxidation in gastrocnemius muscle through modulation of insulin signaling molecules in adult female rats. Endocrine Research, 38(4), 251-262.

[2].   Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Effect of Carica papaya on IRS-1/Akt signaling mechanisms in high-fat-diet-streptozotocin-induced type 2 diabetic experimental rats: A mechanistic approach. Nutrients, 14(19), 4181.

[3].   Perumal, S., Langeshwaran, K., Selvaraj, J., Ponnulakshmi, R., Shyamaladevi, B., & Balasubramanian, M. P., 2018, Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Molecular and Cellular Biochemistry, 449, 27-37.

[4].   Devarajan, N., Jayaraman, S., Mahendra, J., Venkatratnam, P., Rajagopal, P., Palaniappan, H., & Ganesan, S. K., 2021, Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytotherapy Research, 35(6), 3059-3077.

[5].   Jayaraman, S., Natararaj, S., & Veeraraghavan, V. P., 2024, Hesperidin inhibits oral cancer cell growth via apoptosis and inflammatory signaling-mediated mechanisms: Evidence from in vitro and in silico analyses. Cureus, 16(2).

[6].   Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Carica papaya reduces muscle insulin resistance via IR/GLUT4 mediated signaling mechanisms in high fat diet and streptozotocin-induced type-2 diabetic rats. Antioxidants, 11(10), 2081.

[7].   Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Prasad, M., 2023, Carica papaya reduces high fat diet and streptozotocin-induced development of inflammation in adipocyte via IL-1β/IL-6/TNF-α mediated signaling mechanisms in type-2 diabetic rats. Current Issues in Molecular Biology, 45(2), 852.

[8].   Indu, S., Vijayalakshmi, P., Selvaraj, J., & Rajalakshmi, M., 2021, Novel triterpenoids from Cassia fistula stem bark depreciates STZ-induced detrimental changes in IRS-1/Akt-mediated insulin signaling mechanisms in type-1 diabetic rats. Molecules, 26(22), 6812.

[9].   Gupta, G., Siddiqui, M. A., Khan, M. M., Ajmal, M., Ahsan, R., Rahaman, M. A., & Khushtar, M., 2020, Current pharmacological trends on myricetin. Drug Research, 70(10), 448-454.

[10].  Semwal, D. K., Semwal, R. B., Combrinck, S., & Viljoen, A., 2016, Myricetin: A dietary molecule with diverse biological activities. Nutrients, 8(2), 90.

[11].  Afroze, N., Pramodh, S., Hussain, A., Waleed, M., & Vakharia, K., 2020, A review on myricetin as a potential therapeutic candidate for cancer prevention. 3 Biotech, 10(5), 211.

[12].  Hu, Y., Jiang, Q., Zhai, X., Liu, L., & Hong, Y., 2023, Screening and validation of the optimal panel of reference genes in colonic epithelium and relative cancer cell lines. Scientific Reports, 13(1), 17777.

[13].  Bhat, I. A., Naykoo, N. A., Qasim, I., Ganie, F. A., Yousuf, Q., Bhat, B. A., Rasool, R., Aziz, S. A., & Shah, Z. A., 2014, Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non-small cell lung cancer. Meta gene, 2, 123–133.

[14].  Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V., & Biswal, S., 2006, Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Medicine, 3(10), e420.

[15].  Xiong, L., Xie, J., Song, C., Liu, J., Zheng, J., Liu, C., Zhang, X., Li, P., & Wang, F., 2015, The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells. Evidence-based complementary and alternative medicine: eCAM, 2015, 187265.

[16].  Neralla, M., Preethi, A., Selvakumar, S. C., & Sekar, D., 2023, Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva Dental and Oral Science, 73(3), 155–160.

[17].  Lalit, H., 2023, Preparation, Characterization, and Evaluation of Cytotoxic Activity of a Novel Titanium Dioxide Nanoparticle-infiltrated Orthodontic Adhesive: An In Vitro Study. World Journal of Dentistry, 14(10), 882-887.

[18].  Smith, S. M., Lyu, Y. L., & Cai, L., 2014, NF-κB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PloS One, 9(9), e106966.

[19].  Arponen, M., Jalava, N., Widjaja, N., & Ivaska, K. K., 2022, Glucose transporters GLUT1, GLUT3, and GLUT4 have different effects on osteoblast proliferation and metabolism. Frontiers in Physiology, 13, 1035516.

[20].  Bae, T., Hallis, S. P., & Kwak, M. K., 2024, Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Experimental & Molecular Medicine, 56(3), 501–514. https://doi.org/10.1038/s12276-024-01180-8.

[21].  Uruno, A., Yagishita, Y., & Yamamoto, M., 2015, The Keap1-Nrf2 system and diabetes mellitus. Archives of Biochemistry and Biophysics, 566, 76–84. https://doi.org/10.1016/j.abb.2014.12.012.

[22].  An, Y., Xu, B. T., Wan, S. R., Ma, X. M., Long, Y., Xu, Y., & Jiang, Z. Z., 2023, The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular Diabetology, 22(1), 237. https://doi.org/10.1186/s12933-023-01965-7.

[23].  Gopalakrishnan, U., Murthy, R. T., Felicita, A. S., Alshehri, A., Awadh, W., Almalki, A., & Patil, S., 2023, Sulfate-reducing bacteria in patients undergoing fixed orthodontic treatment. International Dental Journal73(2), 274-279.