Antimicrobial Activity of Novel Triterpenoid Derivatives Isolated from Ethyl Acetate Extract of Cassia fistula Stem Bark: In-vitro and In-silico Analysis

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art010

Authors : Rajalakshmi Manikkam, Ireen Christopher, Aishwariya Sowntharrajan, Viji Murugesan, Indu Sabapathy, Vijayalakshmi Periyasamy

Abstract:

Standard treatments for bacterial infections are becoming increasingly ineffective as antibiotic resistance grows worldwide. Due to the overuse of antibiotics, multidrug-resistant bacteria have emerged as a serious hazard and a major worldwide healthcare issue in the twenty-first century. Traditional approaches to creating novel antibacterial medications are insufficient to fulfil the existing pipeline, hence new tactics in the field of antibacterial discovery are being developed. Cassia fistula (C.fistula), a member of the Leguminosae family, naturally contains antibacterial properties. The plant is used to cure skin diseases, liver problems, tuberculose glands, and hematemesis, pruritus, leucoderma, and diabetes. As a result, effective antimicrobial treatment beyond antibiotics is critical. The Plants contain a wide range of secondary metabolites, including tannins, terpenoids, alkaloids, flavonoids, and glycosides, which have antibacterial characteristics. Terpenenes and terpenoids are effective against bacteria, fungus, viruses, and protozoa. Terpenes' mode of action involves lipophilic chemicals disrupting membranes. Adding a methyl group to increase the hydrophilicity of kaurene diterpenoids decreased their antibacterial efficacy significantly. In the study, antibacterial screening assay against S.aureus and K.pneumonia, a new chemical isolated from C.fistula's ethyl acetate extract demonstrated wider inhibitory zones than the positive control. The treated culture's genomic DNA profile remains unchanged after treatment with the new chemical. The new chemical suppressed protein synthesis, resulting in reduced protein content in treated cultures of both strains, confirming its bactericidal effect. Further immune-blot analysis is required to confirm the particular protein. Investigating a novel triterpenoid that reduces pharmaceutical drug load and resistance risk, as well as treatment costs, could offer promising therapeutic options for treating secondary urinary tract infections associated with diabetes.

References:

[1].   Deshmukh, R. K., & Gaikwad, K. K., 2022, Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 1-22. doi:10.1007/s13399-022-02623.

[2].   Towers, G. H., Lopez, A., Hudson, J. B, 2001, Antiviral and antimicrobial activities of medicinal plants Journal of Ethnopharmacology, 77, 189-96.https://doi.org/ 10.1016/s0378-8741(01)00292-6.

[3].   Dahanukar, S. A., Kulkarni, R. A, & Rege, N. N.,2000, Pharmacology of medicinal plants and natural products. Indian Journal of Pharmacology32(4): S81-S118.

[4].   Rajalakshmi, M., Eliza, J., Cecilia Edel Priya, L. V., et al., 2009, Biochemical and histopathological study of Cassia fistula bark extracts in STZ induced diabetic rats. International Journal of Biotechnology, 2: 134-139.

[5].   Sabapathy, I., Christopher, I., Periyasamy, V., & Manikkam, R., 2022, Molecular docking analysis of tetracyclic triterpenoids from Cassia fistula L. with targets for diabetes mellitus. Bioinformation, 2022, 18(3), 200-205. doi:10.6026/97320630018200.

[6].   Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal35(8), 1007-1013.

[7].   Dinga E., Mthiyane, D. M. N., Marume, U, et al., 2022, Biosynthesis of ZnO nanoparticles using Melia azedarach seed extract: evaluation of the cytotoxic and antimicrobial potency. OpenNano, 8,100068.

[8].   Ecevit, K., Barros, A. A., Silva, J. M., & Reis, R. L, 2022, Preventing microbial infections with natural phenolic compounds. Future Pharmacology, 2(4), 460-498.

[9].   Terefe, E. M., 2022, In vitro and in silico pharmacologic evaluation of the antiretroviral activity of croton species. Diss. University of Nairobi.

[10].  Alam, M., Bano, N., Ahmad, T., et al., 2022, Synergistic Role of Plant Extracts and Essential Oils against Multidrug Resistance and Gram-Negative Bacterial Strains Producing Extended-Spectrum β-Lactamases. Antibiotics. 11(7), 855.https://doi.org/10.3390/antibiotics11070855.

[11].  Sruthi, M. A., Mani, G., Ramakrishnan, M., & Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry33(1), 82-88.

[12].  Hochma, E., Yarmolinsky, L., Khalfin, B., et al. 2021, Antimicrobial effect of phytochemicals from edible plants. Processes, 9(11), 2089.

[13].  Pauli, A., Amicbase., 2006, Essential Oils Supplementary Information. Review Science, 13.

[14].  Singh, R., & Sankar, C., 2012, Screening of the Cassia fistula flowers extract for the Anti-acne activity. Res. J. Recent Sci. 2012, 1(11): 53-55.

[15].  Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P., & Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research13(6), 704-713.

[16].  Awal, M. A., Ahsan, S. M., Haque, E., et al., 2010, In vitro antibacterial activity of leaf and root extract of Cassia Fistula. Dinajpur Medical College Journal, 3(1),10-13.

[17].  Sharma, A., Chandraker, S., Patel, V. K., & Ramteke, P., Antibacterial activity of medicinal plants against pathogens causing complicated Urinary Tract Infections. Indian J Pharm Sci. 2009, 71(2): 136-139.https://doi.org/10.4103/0250-474x.54279.

[18].  Webber, D. M., Wallace, M. A., Burnham, C. D., 2022, Stop Waiting for Tomorrow: Disk Diffusion Performed on Early Growth Is an Accurate Method for Antimicrobial Susceptibility Testing with Reduced Turnaround Time. Journal of Clinical Microbiology, 2022, 60(5): e0300720. doi: 10.1128/JCM.03007-20.

[19].  Peterson, L. R., & Shanholtzer, C. J., 1992, Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clinical Microbiology Reviews, 5(4), 420-432.https://doi.org/10.1128/cmr.5.4.420

[20].  Spring, K. R., & Davidson, M. W., Introduction to fluorescence microscopy. Nikon MicroscopyU, 09- 28.

[21].  Michele, D. E., Barresi, R., Kanagawa, M., et al., 2002, Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature, 418(6896), 417-421.https://doi.org/10.1038/nature00837.

[22].  Ahmad, F., Jabeen, K., Iqbal, S., Umar, A., Ameen, F., Gancarz, M., & Eldin Darwish, D.B., Influence of silicon nanoparticles on Avena sativa L. to alleviate the biotic stress of Rhizoctonia solani. Scientific Reports, 3(1), 15191. doi: 10.1038/s41598-023-41699-w.

[23].  Ahmed, O. M., Saleh, A. S., Ahmed, E. A., Ghoneim, M. M., Ebrahim, H. A., Abdelgawad, M. A., Abdel-Gabbar, M., Efficiency of Bone Marrow-Derived Mesenchymal Stem Cells and Hesperetin in the Treatment of Streptozotocin-Induced Type 1 Diabetes in Wistar Rats.   16(6), 859. doi: 10.3390/ph16060859.

[24].  Krishnan, R. P., Pandiar, D., Ramani, P., & Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery126(4), 102120.

[25].  Mahesh, B., & Satish, S., 2008, Antimicrobial activity of someimportant medicinal plant aga inst plant and humanpathogens. World Journal of Agricultural Sciences, 4, 839-843.

[26].  Babu, P., Dinesh., & Subhasree, R. S., 2009, Antimicrobial activities of Lawsonia inermis-a review. Academic Journal of Plant Sciences, 2(4), 231-232.

[27].  Sher, A., 2009, Antimicrobial activity of natural products from medicinal plants. Gomal Journal of Medical Sciences.7(1), 72-78.

[28].  Pazhani, J., Chanthu, K., Jayaraman, S., & Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology27(4), 649-654.

[29].  Khatoon, L., Baliraine, F. N., Bonizzoni, M, et al., 2009, Prevalence of antimalarial drug resistance mutations in Plasmodium vivax and P. falciparum from a malaria-endemic area of Pakistan. The American Journal of Tropical Medicine and Hygiene, 81 (3),525.

[30].  El-Jakee, J. K., Nagwa, S., Atta, A., et al., 2011, Antimicrobial resistance in clinical isolates of Staphylococcus aureus from bovine and human sources in Egypt." Glob. Vet. 7, 581-586.

[31].  Patel, P. G., Raval, P. N., et al., 2012, Bacteriological profile and antibiogram of gram-negative organisms isolated from medical and neurology intensive care unit with special reference to multi-drug resistant organisms. National journal of Medical Research, 2 (3), 335-338.

[32].  Fathima, J. S., Jayaraman, S., Sekar, R., & Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology, 1-10. Patel, B.V.,

[33].  Akiyama, H., Fujii, K., Yamasaki, O., et al., 2001, Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487-491.

[34].  Ceylan, E., & Daniel, Y. C.,2004, Fung Antimicrobial activity of spices 1. Journal of Rapid Methods & Automation in Microbiology, 12 (1), 1-55. https://doi.org/10.1111/j.1745-4581.2004.tb00046.x.

[35].  Fernandez-Lopez, J., Zhi, N., Aleson-Carbonell, L., et al., 2005, Antioxidant and antibacterial activities of natural extracts: application in beef meatballs." Meat Science, 69, (3), 371-380. https://doi.org/10.1016/j.meatsci.2004.08.004.

[36].  Karsha, P. V., & Lakshmi, O. B., 2010, Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. 2010.

[37].  Yasothkumar, D., Ramani, P., Jayaraman, S., Ramalingam, K., & Tilakaratne, W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology18(1), 28.

[38].  Li, X. Z., Plésiat, P., & Nikaido, H., 2015, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria." Clinical Microbiology Review, 28, (2), 337-418. https://doi.org/10.1128/CMR.00117-14.

[39].  Mehta, R., & Champney, W. S., 2003, Neomycin and paromomycin inhibit 30S ribosomalsubunit assembly in Staphylococcus aureus. Current Microbiology, 47, 237-243. DOI: 10.1007/s00284-002-3945-9.

[40].  Böddeker, N., Bahador, G., Gibbs, C., et al., 2002, Characterization of a novel antibacterial agentthat inhibits bacterial translation. Cambridge Journal, 8, 1120-1128. 10.1017/s1355838202024020.

[41].  Sagar, S., Ramani, P., Moses, S., Gheena, S., & Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology, 1-10.