Molecular Docking, Drug-Likeness and Toxicity Prediction to Determine the Role of the Taxifolin on Neurological Diseases

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art009

Authors : Kaviyarasi Renu, Kavitha. S, Vishnu Priya Veeraraghavan, Gayathri R

Abstract:

Through an in-silico approach, the effects of taxifolin on tau, alpha 2 macroglobulin (A2M) and alpha 1 anti-chymotrypsin (ACT), proteins are investigated in relation to neurological disorders. In order to facilitate protein interaction, the ligand taxifolin (extracted from the PubChem Database) and protein receptor molecules (extracted from the PDB) are prepared, converted to PDBQT format, and uploaded in an auto dock. The effects of taxifolin on tau protein, ACT, and A2M are still being studied, but the preliminary findings are promising. These interactions suggest that taxifolin may have a complex role in controlling neuroinflammation, proteostasis, and neurodegeneration in neurological illnesses due to their substantial binding affinity for tau, ACT, and A2M protein. Taxifolin shows promise as a therapy for neurological disorders by targeting tau protein, ACT, and A2M. Lipinski's Rule states that Taxifolin administered orally should not violate more than one condition. Taxifolin examined was in category IV, which is under the dosage of 300 < LD50 = 2000 mg/kg. A significant root mean square value was 0.000, with a docking score of -7.2 for alpha 1 antichymotrypsin and taxifolin. Interactions in 2D and 3D include conventional hydrogen bonds, carbon-hydrogen bonds, and unfavourable donor-donor interactions. The chosen root mean square value was associated with a significant docking score of -10.2 for alpha2 macroglobulin and taxifolin. The docking score for alpha 2 macroglobulin in a two-dimensional structure, emphasising pi-donor bonds, unfavourable donor-donor interactions, and conventional carbon-hydrogen connections. According to these findings, taxifolin has a significant affinity for alpha 2 macroglobulin. Tau had a high root mean square value and a docking score of -7.5 with tau protein. Tau's 2D and 3D structures contain pi-alkyl contacts, pi-stacking interactions, unfavourable donor-donor interactions, and carbon-hydrogen bonds. Its ability to raise A2M activity, decrease ACT expression, and stop tau protein aggregation suggests a variety of potential neuroprotective benefits.

References:

[1].  Topal, F., Nar, M., Gocer, H., Kalin, P., Kocyigit, U. M., Gülçin, İ., & Alwasel, S. H., 2016, Antioxidant Activity of Taxifolin: an Activity–Structure Relationship. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4), 674-683, http://dx.doi.org/10.3109/14756366.2015.1057723.

[2].   Harborne, J. B., and Williams, C. A., 2000, Advances in Flavonoid Research Since 1992. Phytochemistry, 55(6), 481-504,  http://dx.doi.org/10.1016/s0031-9422(00)00235-1.

[3].   Parameswari, R. P., and Lakshmi, T., 2022, Microalgae as a Potential Therapeutic Drug Candidate for Neurodegenerative Diseases. Journal of Biotechnology, 358, 128-139. http://dx.doi.org/10.1016/j.jbiotec.2022.09.009.

[4].   Kumar, S., and Pandey, A. K., 2013, Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013(1), p.162750, http://dx.doi.org/10.1155/2013/162750.

[5].   Zhang, C., Zhan, J., Zhao, M., Dai, H., Deng, Y., Zhou, W., and Zhao, L., 2019, Protective Mechanism of Taxifolin for Chlorpyrifos Neurotoxicity in BV2 Cells. Neurotoxicology, 74, 74-80, http://dx.doi.org/10.1016/j.neuro.2019.05.010.

[6].   Sato, M., Murakami, K., Uno, M., Ikubo, H., Nakagawa, Y., Katayama, S., Akagi, K. I., and Irie, K., 2013, Structure-activity Relationship for (+)-Taxifolin Isolated from Silymarin as an Inhibitor of Amyloid β Aggregation. Bioscience, Biotechnology, and Biochemistry, 77(5), 1100-1103, https://academic.oup.com/bbb/article-pdf/77/5/1100/35045235/bbb1100.pdf.

[7].   Sato, M., Murakami, K., Uno, M., Nakagawa, Y., Katayama, S., Akagi, K. I., Masuda, Y., Takegoshi, K., and Irie, K., 2013, Site-specific Inhibitory mechanism for Amyloid β42 Aggregation by Catechol-type Flavonoids Targeting the Lys Residues. Journal of Biological Chemistry, 288(32), 23212-23224, http://dx.doi.org/10.1074/jbc.M113.464222.

[8].   Inoue, T., Saito, S., Tanaka, M., Yamakage, H., Kusakabe, T., Shimatsu, A., Ihara, M., and Satoh-Asahara, N., 2019, Pleiotropic Neuroprotective Effects of Taxifolin in Cerebral Amyloid Angiopathy. Proceedings of the National Academy of Sciences, 116(20), 10031-10038,  http://dx.doi.org/10.1073/pnas.1901659116.

[9].   Licastro, F., Mallory, M., Hansen, L. A., and Masliah, E., 1998, Increased levels of α-1-Antichymotrypsin in Brains of Patients with Alzheimer's Disease Correlate with Activated Astrocytes and are Affected by APOE 4 Genotype. Journal of Neuroimmunology, 88(1-2), 105-110, http://dx.doi.org/10.1016/S0165-5728(98)00096-4.

[10].  Abraham, C. R., Selkoe, D. J., and Potter, H., 1988, Immunochemical Identification of the Serine Protease Inhibitor α1-Antichymotrypsin in the Brain Amyloid Deposits of Alzheimer's disease. Cell, 52(4), 487-501, http://dx.doi.org/10.1016/0092-8674(88)90462-X.

[11].  Tyagi, E., Fiorelli, T., Norden, M., and Padmanabhan, J., 2013, Alpha 1‐Antichymotrypsin, an Inflammatory Protein Overexpressed in the Brains of Patients with Alzheimer’s Disease, Induces Tau Hyperphosphorylation through c‐Jun N‐Terminal Kinase Activation. International Journal of Alzheimer’s Disease, 2013(1), p.606083, https://doi.org/10.1155/2013/606083.

[12].  Souparnika. V., Karthik G. M., and Vidya. S., 2023, Antioxidant Activity Of L - Theanine On Cadmium Induced Oxidative Stress Mediated Neurodegeneration - An in vivo Analysis. Journal of Population Therapeutics and Clinical Pharmacology, 29(02), pp. 123–130, https://doi.org/10.47750/jptcp.2022.952.

[13].  Veeraraghavan, V. P., Jayaraman, S., Rengasamy, G., Mony, U., Ganapathy, D. M., Geetha, R. V., and Sekar, D., 2021, Deciphering the role of microRNAs in neuroblastoma. Molecules, 27(1), p.99,  http://dx.doi.org/10.3390/molecules27010099.

[14].  Goedert, M., 2004, Tau protein and Neurodegeneration. Seminars in cell & developmental biology, 15(1), 45–9,  http://dx.doi.org/10.1016/j.semcdb.2003.12.015.

[15].  Ramadoss, R., Krishnan, R., Raman, S., Padmanaban, R., Anbuelangovan, N. and Eswaramoorthy, R., 2023. Salivary stimulatory effect of novel low level transcutaneous electro neurostimulator in geriatric patients with xerostomia. BMC Oral Health23(1), p.334.

[16].  Ashraf, G. M., and Alexiou, A., 2019, Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease. Springer Nature, 293 p, https://play.google.com/store/books/details?id=N8m1DwAAQBAJ.

[17].  Hirshasri, A.G., Renu, K., Priya, V.V., Gayathri, R. and Kavitha, S., The Effect of Aspalathin on SMAD2, SMAD3, TGF-β-A Major Contributor of Inflammation–An In-silico Approach.

[18].  Roy, A., Cheriyan, B.V., Perumal, E., Rengasamy, K.R. and Anandakumar, S., 2024. Effect of hinokitiol in ameliorating oral cancer: in vitro and in silico evidences. Odontology, pp.1-14.

[19].  Saini, R.S., Binduhayyim, R.I.H., Gurumurthy, V., Alshadidi, A.A.F., Aldosari, L.I.N., Okshah, A., Kuruniyan, M.S., Dermawan, D., Avetisyan, A., Mosaddad, S.A. and Heboyan, A., 2024. Dental biomaterials redefined: molecular docking and dynamics-driven dental resin composite optimization. BMC Oral Health24(1), p.557.

[20].  Priya, V., Keerthivasan, S. and Kaviyarasi, R., Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation-An in-silico Approach.

[21].  Neelam, S., Gokara, M., Sudhamalla, B., Amooru, D. G. and Subramanyam, R., 2010, Interaction Studies of Coumaroyltyramine with Human Serum Albumin and its Biological Importance. The Journal of Physical Chemistry B, 114(8), pp.3005-3012, https://pubs.acs.org/doi/abs/10.1021/jp910156k.

[22].  Saini, R.S., Vaddamanu, S.K., Dermawan, D., Bavabeedu, S.S., Khudaverdyan, M., Mosaddad, S.A. and Heboyan, A., 2024. In Silico Docking of Medicinal Herbs Against P. gingivalis for Chronic Periodontitis Intervention. International Dental Journal.

[23].  Alfadda, A. A., Benabdelkamel, H., Masood, A., Jammah, A. A. and Ekhzaimy, A. A., 2018, Differences in the plasma proteome of patients with hypothyroidism before and after thyroid hormone replacement: A proteomic analysis. International Journal of Molecular Sciences, 19(1), p.88,  https://www.mdpi.com/1422-0067/19/1/88.

[24].  Yang, J., Zhi, W., and Wang, L., 2024, Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules, 29(12), p.2812,  https://www.mdpi.com/1420-3049/29/12/2812.