Therapeutic Implications of Medicinal Plants in Combatting Gastric Cancer
Abstract:
Cancer ranks as the second most prevalent cause of mortality globally. More specifically, gastric cancer holds the second position in terms of cancer-related fatalities and is the fourth most frequently diagnosed cancer worldwide. A malignant condition called gastric carcinoma begins in the stomach. Despite decreased incidence, all malignancies continue to be second leading cause mortality around the globe. The majority of the stomach cancer aren’t discovered until they’re become rather large or have migrated outside the stomach in nations where routine screening for the disease is not practised. Loss of appetite, weight loss, stomach pain, feeling of fullness after eating a small amount. The Epstein- barr virus, in addition to H.pylori infection, is the second component linked to the development of GC. The treatment of gastric cancer is a complex process that typically involves in surgery, chemotherapy, radiation therapy, and targeted therapies. While plants and natural compounds have been explored for their potential in cancer treatment, it's important to note that there is no single plant or herbal remedy that can serve as a standalone cure for gastric cancer. Instead, various plants and their derivatives may play supportive roles in managing symptoms, improving the overall well-being of patients, and potentially enhancing the effectiveness of conventional treatments. In this review mainly focus of the medicinal plant such as Curcuma Mangga Rhizomes, Curcuma Zedoaria Rhizomes, Zanthoxylum Nitidum, Perilla Frutescens, Bamboo Shavings, Hericium Erinaceus Mycelium, Liang Jing mushroom, Turmeric.References:
[1]. Sitarz, R., Skierucha, M., Mielko,
J., Offerhaus, G. J. A., Maciejewski, R., Polkowski, W. P., 2023, Gastric
cancer: epidemiology, prevention, classification, and treatment, 239-248
10.2147/CMAR.S149619.
[2]. Jayaraman, S., Natarajan, S. R.,
Ponnusamy, B., Veeraraghavan, V. P., & Jasmine, S. 2023, Unlocking the
potential of beta-sitosterol: Augmenting the suppression of oral cancer cells
through extrinsic and intrinsic signalling mechanisms. The Saudi Dental
Journal, 35(8), 1007-1013.
[3]. Alipour, M., 2021, Molecular
Mechanism of Helicobacter pylori-Induced
Gastric Cancer. J Gastrointest Cancer, 23-30.10.1007/s12029-020-00518-5.
[4]. Sruthi, M. A., Mani, G.,
Ramakrishnan, M. and Selvaraj, J., 2023, Dental caries as a source of
Helicobacter pylori infection in children: An RT‐PCR study. International
Journal of Paediatric Dentistry, 33(1), pp.82-88.
[5]. Mao, Q. Q., Xu, X. Y., Shang, A.,
Gan, R. Y., Wu, D. T., Atanasov, A. G., Li, H. B., 2020, Phytochemicals for the
Prevention and Treatment of Gastric Cancer: Effects and Mechanisms,
10.3390/ijms21020570.
[6]. Jayaraman, S., Natarajan, S. R.,
Veeraraghavan, V. P. and Jasmine, S., 2023, Unveiling the anti-cancer
mechanisms of calotropin: Insights into cell growth inhibition, cell cycle
arrest, and metabolic regulation in human oral squamous carcinoma cells
(HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6),
pp.704-713.
[7]. Mustapha, N. M., 2010, ASEAN herbal
and medicinal plants ASEAN Secretariat, Jakarta, Indonesia, 336(p).
[8]. Krishnan, R. P., Pandiar, D.,
Ramani, P. and Jayaraman, S., 2025, Molecular profiling of oral epithelial
dysplasia and oral squamous cell carcinoma using next generation
sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery, 126(4),
p.102120.
[9]. Jung, E. B., Trinh, T. A., Lee, T.
K., Yamabe, N., Kang, K. S., Song, J. H., Choi, S., Lee, S., Jang, T. S., Kim,
K. H., Hwang, G. S., 2018, Curcuma zedoalide contributes to the cytotoxicity of
Curcuma zedoaria rhizomes against human gastric cancer AGS cells through
induction of apoptosis, 213, 48–55. 10.1016/j.jep.2017.10.025.
[10]. Eun Bee Jung, Tuy An Trinh, Kyoung
Lee, et al.: Curcuma zedoalide contributes to the cytotoxicity of Curcuma
zedoaria rhizomes against human gastric cancer AGS cells through induction
of apoptosis Journal of Ethnopharmacology. 2018, 48-55.
10.1016/j.jep.2017.10.025
[11]. Salvesen, G. S., Dixit, V. M.,
1997, Caspases: intracellular signalling by proteolysis, 443-446.
10.1016/s0092-8674(00)80430-4.
[12]. Li, P., Nijhawan, D., Budihardjo,
I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., Wang, X., 1997, Cytochrome c
and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic
protease cascade, 479-489. 10.1016/s0092-8674(00)80434-1.
[13]. Earnshaw, W. C., Martins, L. M.,
Kaufmann, S. H., 1999, Mammalian caspases: structure, activation, substrates,
and functions during apoptosis. Annual Review of Biochemistry, 383-424.
10.1146/annurev.biochem.68.1.383.
[14]. Broker, L. E., Kruyt, F. A.,
Giaccone, G., 2005, Cell death independent of caspases: a review,
10.1158/1078-0432.ccr-04-2223.
[15]. Zhang, C. C., Cao, C.
Y., Kubo, M., Harada, K., Yan, X. T., Fukuyama, Y., Gao, J. M., 2017,
Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and
Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway, 10.3390/ijms18081659.
[16]. Kuo, H. C., Kuo, Y. R., Lee,
K. F., Hsieh, M. C., Huang, C. Y., Hsieh, Y. Y., Lee, K. C., Kuo, H. L., Lee, L. Y., Chen, W. P.,
Chen, C. C., Tung, S. Y., 2017, A Comparative Proteomic Analysis of Erinacine
a’s Inhibition of Gastric Cancer Cell Viability and Invasiveness, 195-208,
10.1159/000480338
[17]. Cordeiro, Y., Machado, F., Juliano,
L., Juliano, M. A., Brentani, R. R., Foguel, D., 2001, Journal of Biological
Chemistry, 276(24), 21887–21893.
[18]. Sagar, S., Ramani, P., Moses, S.,
Gheena, S. and Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and
1, 25 dihydroxycholecalciferol in patients undergoing orthodontic
treatment. Odontology, pp.1-10.
[19]. Schaller, M. D., 2004, FAK
and paxillin regulators of N-cadherin adhesion and inhibitors of cell
migration, 157-169. 10.1083/jcb.200406151.
[20]. Manning, B. D., Cantley, L. C.,
2007, AKT/PKB signalling: navigating downstream, 1261-1274.
10.1016/j.cell.2007.06.009.
[21]. Weng, Q. P., Kozlowski, M., Belham,
C., Zhang, A., Comb, M. J., Avruch, J., 1998, Regulation of the p70 S6 kinase
by phosphorylation In vivo. Analysis using
site-specific anti-phosphopeptide antibodies, 16621-16629.
10.1074/jbc.273.26.16621
[22]. Bokoch, G. M., 2003, Biology of the
p21-activated kinases. Annu Rev Biochem, 743-781.
10.1146/annurev.biochem.72.121801.161742
[23]. Liu, Y. B., Nair, M. G., 2011,
Labdane diterpenes in Curcuma mangga rhizomes inhibit lipid peroxidation,
cyclooxygenase enzymes and human tumour cell proliferation. Food Chem,
124, 527–532. 10.1016/j.foodchem.2010.06.064
[24]. Malek, S. N., Lee, G. S., Hong, S.
L., Yaacob, H., Wahab, N. A., Faizal Weber, J. F., Shah, S. A., 2011,
Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes
Molecules, 4539-4548. 10.3390/molecules16064539
[25]. Liu, Y., Nair, M., 2012, Curcuma
longa and Curcuma mangga leaves exhibit functional food property
Food Chem, 135 (2), 634-640. 10.1016/j.foodchem.2012.04.129
[26]. Keum, Y. W., 2011, Differential
Modulation of Helicobacter pylori Drug Susceptibility by Specific Fatty
Acids," Antimicrobial Agents and Chemotherapy, 2867-2875.
10.1128/AAC.01432-10
[27]. Yunbao Liu, Muraleedharan
G. Nair:
Labdane diterpenes in Curcuma mangga rhizomes inhibit
lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation.
2011.10.1016/j.foodchem.2010.06.064
[28]. Xu, Q., Li, Z. X., Ye, Z. M., 2011,
Nitidine chloride-induced apoptosis of human osteosarcoma cells and its
mechanism]. Nan Fang Yi Ke Da Xue Xue Bao. PMID: 21354931
[29]. Hu, J., Zhang, W. D., Liu, R. H.,
Zhang, C., Shen, Y. H., Li, H. L., Liang, M. J., Xu, X. K., 2006,
Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb) DC, and their
analgesic and anti-inflammatory activities, 10.1002/cbdv.200690108.
[30]. An, R., Hou, Z., Li, J. T., Yu, H.
N., Mou, Y. H., Guo, C., 2018, Synthesis and Biological Evaluation of Novel
4-Substituted Coumarin Derivatives as Antitumor
Agent,10.3390/molecules23092281.
[31]. Yasothkumar, D., Ramani, P.,
Jayaraman, S., Ramalingam, K. and Tilakaratne, W.M., 2024, Expression Profile
of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and
Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and
Neck Pathology, 18(1), p.28.
[32]. Yang, Y., Cao, Y., Chen, L., Liu,
F., Qi, Z., Cheng, X., Wang, Z., 2018, Cryptotanshinone
suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling
pathway in ovarian cancer," Journal of Cellular Physiology, 10.1002/cam4.1691.
[33]. Chen, J., Wang, J., Lin, L., He,
L., 2011, Inhibition of STAT3 Signaling Pathway by Nitidine Chloride Suppressed
the Angiogenesis and Growth of Human Gastric Cancer,
10.1158/1535-7163.MCT-11-0648
[34]. Cui, Y., Lai, B., Tang, X., 2019,
Microbial Fuel Cell-Based Biosensors, 10.3390%2Fbios9030092
[35]. Gao, Y., Lyu, L., Feng,
Y., Li, F., Hu, Y., 2021, A review of cutting-edge therapies for hepatocellular
carcinoma (HCC): Perspectives from patents, 3066-3081. 10.7150/ijms.59930.
[36]. Zhang, Y., Liu, S. S., Feng, Q.,
Huang, X., Wang, X., Peng, Y., Zhao, Z., Liu, Z., 2019, Perillaldehyde
activates AMP-activated protein kinase to suppress the growth of gastric cancer
via induction of autophagy, 1716–1725. 10.1002/jcb.27491
[37]. Pazhani, J., Chanthu, K.,
Jayaraman, S. and Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral
squamous cell carcinoma and oral leukoplakia using ELISA. Journal of
Oral and Maxillofacial Pathology, 27(4), pp.649-654.
[38]. Lu, B. Y., Wu, X. Q., Tie, X. W.,
Zhang, Y., Zhang, Y., 2005, Toxicology and safety of anti-oxidant of bamboo
leaves. Part 1: Acute and subchronic toxicity studies on anti-oxidant of bamboo
leaves. Food Chem Toxicol, 783–792. 10.1016/j.fct.2005.01.019.
[39]. Fathima, J. S., Jayaraman, S.,
Sekar, R. and Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and
treatment of oral premalignant disorders. Odontology, pp.1-10.
[40]. Gong, J. Y., Wu, X. Q., Lu, B. Y.,
Zhang, Y., 2010, Safety evaluation of polyphenol-rich extract from bamboo
shavings. Afr J Biotechnol, 77–86. http://www.academicjournals.org/AJB
[41]. Sreevarun, M., Ajay, R., Suganya,
G., Rakshagan, V., Bhanuchander, V., & Suma, K., 2023, Formulation,
Configuration, and Physical Properties of Dental Composite Resin Containing a
Novel 2π + 2π Photodimerized Crosslinker - Cinnamyl Methacrylate: An In Vitro
Research. The Journal Of Contemporary Dental Practice, 24(6), 364–371. https://doi.org/10.5005/jp-journals-10024-3480
[42]. Alam, M. K., Alqhtani, N. R.,
Alnufaiy, B., Alqahtani, A. S., Elsahn, N. A., Russo, D., Di Blasio, M.,
Cicciù, M., & Minervini, G., 2024, A systematic review and meta-analysis of
the impact of resveratrol on oral cancer: potential therapeutic implications. BMC
Oral Health, 24(1), 412. https://doi.org/10.1186/s12903-024-04045-8
[43]. Yadalam, P. K., Arumuganainar, D.,
Ronsivalle, V., Di Blasio, M., Badnjevic, A., Marrapodi, M. M., Cervino, G.,
& Minervini, G., 2024, Prediction of interactomic hub genes in PBMC cells
in type 2 diabetes mellitus, dyslipidemia, and periodontitis. BMC Oral Health,
24(1), 385. https://doi.org/10.1186/s12903-024-04041-y
[44]. Sun, Y. Q., Guo, T. K., Xi, Y.
M., Chen, C., Wang, J., Wang, Z. R., 2007, Effects of AZT and RNA-protein
complex (FA-2-b-beta) extracted from Liang Jin mushroom on apoptosis of gastric
cancer cells, 10.3748/wjg.v13.i31.4185
[45]. Olivas-Aguirre F. J, Rodrigo-Garcia
J, Martinez-Ruiz N. D. R., Cardenas- Robles, A. I., Mendoza-Diaz, S. O.,
Alvarez-Parrilla, E., Gonzalez-Aguilar, G. A., De la rosa, L. A., Ramos-
Jimenez, A., Wall-Medrano, A., 2016, Cyanidin-3-O-glucoside:
Physical-chemistry, foodomics and health effects. Molecules,
10.3390/molecules21091264
[46]. Ashrafizadeh, M., Zarrabi, A.,
Hashemi, F., Zabolian, A., Saleki, H., Bagherian, M., Azami, N., Bejandi, K.
A., Hushmandi, K., Ang, H. A., Makvandi, P., Khan, H., Kumar, A. P., 2020,
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms
Enhancing Antitumor Activity, 10.3390/pharmaceutics12111084
[47]. Yu, L. L., Wu, J. G., Dai, N., Yu, H. G., Si, J. M., 2011, Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. 26, 1197–1203. 10.3892/or.2011.1410