Effects of Hesperidin on Histopathological and Epigenetic Changes in Streptozotocin-Induced Type-2 Diabetic Rats
Abstract:
Chemicals have been
shown to induce epigenetic changes that alter glucose metabolism genes,
potentially leading to insulin resistance and increasing the risk of metabolic
disorders like type 2 diabetes. This study was aimed to assess
histopathological and epigenetic changes in insulin signalling molecules in
STZ-induced type-2 diabetic rats and the possible therapeutic role of
hesperidin. Hesperidin (100mg/kg b.wt) was administered to STZ-induced rats and
assessed for its protective role and epigenetic mechanisms in the gastrocnemius
muscle. Diabetic rats exhibited significant increase (p<0.05) in renal
function markers such as urea (60, 140, 80, 70, and 79 mg/dL) and creatinine (0.9,
2, 1.2, 1.1, and 1.0 mg/dL), oxidative stress markers, while antioxidant
enzymes such as superoxide dismutase (0.9, 0.5,0.8, 0.87 and U/mg protein) and
catalase (1, 0.4,0.86, 0.92 and 1.13 U/mg protein) were markedly lower
(p<0.05). Histopathological analysis revealed a decrease and disruption in
muscle fibres. The mRNA expression of insulin signalling molecules PI3K (1,
0.6, 0.8, 1.1, and 1 fold) and Munc18 (1, 0.6, 0.8, 1, and 0.9) was
significantly (p<0.01) reduced in diabetic groups. Epigenetic studies showed
CpG island methylation in the promoter regions of GLUT4, Akt, and IR genes in
diabetic rats. However, hesperidin treatment restored the detrimental changes
caused by diabetogenic agent, streptozotocin. The present study concludes that hesperidin
plays a central role in regulating epigenetic mechanisms of insulin signalling
molecules and GLUT4 translocation in skeletal muscle and thereby protects the
muscle cells.
References:
[1]. Herman,
W. H., 2017, The Global Burden of Diabetes: An Overview.
10.1007/978-3-319-41559-8_1.
[2]. Pyrzynska,
K., 2022, Hesperidin: A Review on Extraction Methods, Stability and Biological
Activities. Nutrients, 14(12), 2387. doi: 10.3390/nu14122387
[3]. Jayaraman, S., Natarajan, S. R.,
Ponnusamy, B., Veeraraghavan, V. P. and Jasmine, S., 2023. Unlocking the
potential of beta sitosterol: Augmenting the suppression of oral cancer cells
through extrinsic and intrinsic signalling mechanisms. The Saudi Dental
Journal, 35(8), pp.1007-1013.
[4]. Jayaraman,
R., Subramani, S., Sheik Abdullah S. H., & Udaiyar M., 2018,
Antihyperglycemic effect of hesperidin, a citrus flavonoid, extenuates
hyperglycemia and exploring the potential role in antioxidant and
antihyperlipidemic in streptozotocin-induced diabetic rats. Biomedicine and
Pharmacotherapy, 97, 98-106. doi: 10.1016/j.biopha.2017.10.102.
[5]. Al-Ishaq,
R. K., Abotaleb M., Kubatka P., Kajo K., & Büsselberg D., 2019, Flavonoids
and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve
Blood Sugar Levels. Biomolecules, 9(9), 430. doi:10.3390/biom9090430.
[6]. Sundaram,
R., Nandhakumar E., & Haseena B. H., 2019, Hesperidin, a citrus
flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate
metabolism in streptozotocin-induced diabetic rats, Toxicology
Mechanisms and Methods, 29:9, 644-653.
[7]. de
Souza P, da Silva R. C. V., Mariano, L. N. B., Dick, S. L., & Ventura GC,
Cechinel-Filho V, 2022, Diuretic and Natriuretic Effects of Hesperidin, a
Flavanone Glycoside, in Female and Male Hypertensive Rats. Plants (Basel),
21, 12(1):25.
[8]. Sruthi, M. A., Mani, G.,
Ramakrishnan, M. and Selvaraj, J., 2023, Dental caries as a source of
Helicobacter pylori infection in children: An RT‐PCR study. International
Journal of Paediatric Dentistry, 33(1), pp.82-88.
[9]. Peng,
P., Jin J., Zou G., Sui Y., Han Y, Zhao D., & Liu L., 2021. Hesperidin
prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway.
Experimental and Therapeutic Medicine, 21(1):53.
[11].
Krishnan,
R. P., Pandiar, D., Ramani, P. and Jayaraman, S., 2025, Molecular profiling of
oral epithelial dysplasia and oral squamous cell carcinoma using next
generation sequencing. Journal of Stomatology, Oral and Maxillofacial
Surgery, 126(4), p.102120.
[12].
Mahmoud, A. M., 2016, Hesperidin as a Promising
Anti-Diabetic Flavonoid: the Underlying Molecular Mechanism. Int Journal of
Food and Nutritional Science, 3, 313-314.
[13].
Holliday, R., 2006, Epigenetics: a historical
overview. Epigenetics, 1: 76– 80.
[14].
Weinhold. B., 2006, Epigenetics: the science of
change. Environ Health Perspect, 114(3), A160-7.
[15].
Berger, S. L., Kouzarides, T., Shiekhattar, R.,
Shilatifard, A., 2009, An operational definition of epigenetics. Genes &
Development, 23(7), 781-3. doi:
10.1101/gad.1787609.
[16].
Jayaraman,
S., Natarajan, S. R., Veeraraghavan, V. P. and Jasmine, S., 2023, Unveiling the
anti-cancer mechanisms of calotropin: Insights into cell growth inhibition,
cell cycle arrest, and metabolic regulation in human oral squamous carcinoma
cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6),
pp.704-713.
[17].
Moosavi, A., Motevalizadeh A. A., 2016, Role of
Epigenetics in Biology and Human Diseases. Iranian Biomedical Journal, 20(5), 246-58. doi:
10.22045/ibj.2016.01.
[18].
Kawada, J., 1992, New hypotheses for the mechanisms of
streptozotocin and alloxan inducing Diabetes mellitus. Yakugaku Zasshi, 112(11), 773-91. Japanese. doi:
10.1248/ yakushi1947. 112.11_773
[19].
Szkudelski, T., 2001, The mechanism of alloxan and
streptozotocin action in B cells of the rat pancreas. Physiological Research,
50(6):537-46.
[20].
Chen, S., Gan, D., Lin, S., Zhong, Y., Chen M., Zou
X., Shao Z., & Xiao, G., 2022, Metformin in aging and aging-related
diseases: clinical applications and relevant mechanisms. Theranostics,
12(6), 2722-2740. doi: 10.7150/thno.71360.
[21].
Gurina, T. S., Simms, L., Histology, Staining. In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024
Jan-. Available from: https://www.ncbi.nlm.nih.gov/books
/NBK557663/
[22].
Tahir, R. A., Zheng, D. A., Nazir, A., & Qing, H.,
2019, A review of computational algorithms for CpG islands detection. Journal
of Biosciences, 44(6), 143.
[23].
Patrick, P. L., Lam., Mitsuyo O., Subhankar
D., Yu H., Tairan Q., Tao L., Dan Z., Youhou,
K., Yunfeng, L., Maria, K., Li X., Wilson C. Y., et al.,
2013, Munc18b Is a Major Mediator of Insulin Exocytosis in Rat Pancreatic
β-Cells. Diabetes, 62(7), 2416–2428. https://doi.org/10.2337/db12-1380
[24].
Świderska E., Strycharz, J., Wróblewski, A., Szemraj
J., Drzewoski J., & Śliwińska A., 2020, Role of PI3K/AKT Pathway in
Insulin-Mediated Glucose Uptake [Internet]. Blood Glucose Levels.
IntechOpen; 2020. http://dx.doi.org/10.5772/intechopen.80402
[25].Fathima, J. S., Jayaraman, S.,
Sekar, R. and Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and
treatment of oral premalignant disorders. Odontology, pp.1-10.
[26].
Ivorra, M. D., Paya, M., Villar, A., 1989, A review of
natural products and plants as potential antidiabetic drugs. Journal of
Ethnopharmacology, 27(3),
243–275.
[27].
Anil, B., 2010, Gaikwad, Jeena Gupta, Kulbhushan
Tikoo; Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression
under hyperglycaemic and hyperinsulinaemic conditions. Biochemistry Journal,
432 (2), 333–341. doi: https://doi.org/10.1042/BJ20100414
[28].
Yasothkumar,
D., Ramani, P., Jayaraman, S., Ramalingam, K. and Tilakaratne, W. M., 2024,
Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral
Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous
Fibrosis. Head and Neck Pathology, 18(1), p.28.
[29].
Bansal, A., & Pinney, S. E., 2017, DNA methylation
and its role in the pathogenesis of diabetes. Pediatr Diabetes, 18(3),167-177. doi:
10.1111/pedi.12521.
[30].
Sagar,
S., Ramani, P., Moses, S., Gheena, S. and Selvaraj, J., 2024, Correlation of
salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients
undergoing orthodontic treatment. Odontology, pp.1-10.
[31].
Thomas, D. D., Corkey, B. E., Istfan N.W., &
Apovian C. M., 2019, Hyperinsulinemia: An Early Indicator of Metabolic
Dysfunction. Journal of the Endocrine Society, 3(9),1727-1747. doi: 10.1210/js.2019-00065.
[32].
Wilcox. G., 2005, Insulin and insulin resistance.
Clinical Biochemist Reviews, 2005 26(2), 19-39.
[33].
Zhao, C., Yang C., Wai, S. T. C., Zhang Y. P.,
Portillo M, Paoli P., Wu Y., San Cheang W., Liu B., Carpéné C., Xiao J., &
Cao H., 2019, Regulation of glucose metabolism by bioactive phytochemicals for
the management of type 2 diabetes mellitus. Critical Reviews in Food Science
and Nutrition; 59(6):830-847. doi: 10.1080/10408398.2018.1501658.
[34].
Stanley M. P. P., & Kamalakkannan N., 2006, Rutin
improves glucose homeostasis in streptozotocin diabetic tissues by altering
glycolytic and gluconeogenic enzymes. Journal of Biochemical and Molecular
Toxicology, 20(2), 96-102. doi:
10.1002/jbt.20117.
[35].
Latha M, & Pari L. 2003, Antihyperglycaemic effect
of Cassia auriculata in experimental
diabetes and its effects on key metabolic enzymes involved in carbohydrate
metabolism. Clinical and Experimental Pharmacology and Physiology,
30(1‐2):38-43.
[36].
Jayachandran, M., Zhang, T., Ganesan, K., Xu, B.,
Chung, & S.S.M. .2018, Isoquercetin ameliorates hyperglycemia and regulates
key enzymes of glucose metabolism via insulin signaling pathway in
streptozotocin-induced diabetic rats. European Journal of Pharmacology, 82:112–120.
[37].
Pari, L, & Rajarajeswari, N., 2009. Efficacy of
coumarin on hepatic key enzymes of glucose metabolism in chemical induced type
2 diabetic rats. Chemico-Biological Interactions, 181:292–296.
[38].
Gothandam, K., Ganesan, V. S., Ayyasamy, T., &
Ramalingam, S., 2019, Antioxidant potential of theaflavin ameliorates the
activities of key enzymes of glucose metabolism in high fat diet and
streptozotocin–induced diabetic rats. Redox Report, 24:41–50.
[39].
Tian, M., Han, Y. B., Zhao, C. C., et al. 2021,
Hesperidin alleviates insulin resistance by improving HG-induced oxidative
stress and mitochondrial dysfunction by restoring miR-149. Diabetol Metab Syndr
13:50. https://doi.org/10.1186/s13098-021-00664-1.
[40].
Chen C, Peng S, Chen F, Liu L, Li Z, Zeng G, Huang Q.
2017, Protective effects of pioglitazone on vascular endothelial cell
dysfunction induced by high glucose via inhibition of IKKα/β-NFκB signaling
mediated by PPARγ in vitro. Canadian
Journal of Physiology and Pharmacology,
95(12), 1480-1487. doi: 10.1139/cjpp-2016-0574.
[41].
Copps, K.D.;,White, M.F. 2012, Regulation of insulin
sensitivity by serine/threonine phosphorylation of insulin receptor substrate
proteins IRS1 and IRS2. Diabetologia, 55:2565–2582.
[42].
Chuang, W.T., Yen, C.C., Huang, C.S., Chen, H.W., Lii,
C. K., 2020, Benzyl Isothiocyanate
Ameliorates High-Fat Diet-Induced Hyperglycemia by Enhancing Nrf2-Dependent
Antioxidant Defense-Mediated IRS-1/AKT/TBC1D1 Signaling and GLUT4 Expression in
Skeletal Muscle. Journal of Agricultural and Food Chemistry, 2020, 68,
15228–15238.
[43].
Boucher, J., Kleinridders, A., Kahn, C. R., 2014,
Insulin receptor signaling in normal and insulin-resistant states. Cold Spring
Harbor Perspectives in Biology, 2014,
6, a009191.
[44].
Zhang, Y. Xu, W., Huang, X., Zhao, Y., Ren, Q., Hong,
Z., Huang, M., Xing, X., 2018, Fucoxanthin ameliorates hyperglycemia,
hyperlipidemia and insulin resistance in diabetic rats partially through
IRS-1/PI3K/Akt and AMPK pathways. Journal of Functional Foods, 48, 515–524.
[45].
Cai, S., Sun, W., Fan, Y., Guo, X., Xu, G., Xu, T.,
Hou, Y., Zhao, B., Feng, & X., Liu, 2016.
T. Effect of mulberry leaf (Folium Mori)
on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2
diabetes mellitus rats. Pharmaceutical Biology, 54, 2685–2691.
[46].
Hsu, W. H., Hsiao, P. J., Lin, P. C., Chen, S. C.,
Lee, M. Y., Shin, S. J., 2017. Effect of metformin on kidney function in
patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget,
9(4), 5416-5423. doi: 10.18632/oncotarget.23387.
[47]. Bandeira Sde, M, Guedes Gda, S, da Fonseca, L. J., Pires, A. S., Gelain, D. P., Moreira J. C., Rabelo, L. A., Vasconcelos, S. M., Goulart, M. O., 2012, Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev, 819310. doi: 10.1155/2012/819310.