Molecular Approach to Identify Antitumorigenic Potential of Lumicolchicine in MCF-7 cells: Evidence Through Angiogenic Signalling

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art004

Authors : Vishnu Priya Veeraraghavan, Selvaraj Jayaraman, Nandha K, Shalini Vadivel

Abstract:

Breast cancer remains a leading cause of mortality among women worldwide, highlighting the urgent need for new therapeutic agents. This study evaluates the cytotoxicity of Lumicolchicine (LMC) against the MCF-7 breast cancer cell line using both in vitro and in silico methods, with a focus on angiogenic signaling pathways. The in vitro assessment involved treating MCF-7 cells with varying concentrations of LMC and measuring cell viability using the MTT assay. Results indicated a dose-dependent reduction in cell proliferation, demonstrating LMC's cytotoxicity. To explore the molecular mechanisms underlying LMC's effects, we conducted in silico molecular docking studies on angiogenic signaling proteins: HIF1A, AKT, mTOR, VEGF, and ERK. The simulations revealed strong binding affinities of LMC to these targets, suggesting inhibition of angiogenic pathways crucial for tumor growth and metastasis. Further validation through quantitative PCR and Western blot analyses confirmed these findings, showing decreased expression levels of VEGF, VEGFR2, and HIF-1α in treated MCF-7 cells, supporting the notion that LMC suppresses angiogenesis. In summary, our combined in vitro and in silico findings suggest that Lumicolchicine has significant potential as an antitumor agent against breast cancer by targeting and inhibiting angiogenic signaling pathways. This study provides a foundation for future preclinical and clinical investigations into Lumicolchicine's use in breast cancer therapy.

References:

[1].  Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A., 2021, Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers, 13(17), 4287. https://doi.org/10.3390/cancers13174287

[2].  Miziak, P., Baran, M., Błaszczak, E., Przybyszewska-Podstawka, A., Kałafut, J., Smok-Kalwat, J., Dmoszyńska-Graniczka, M., Kiełbus, M., & Stepulak, A., 2023, Estrogen Receptor Signaling in Breast Cancer. Cancers, 15(19), 4689. https://doi.org/10.3390/cancers15194689

[3].  Giatagana, E. M., Berdiaki, A., Tsatsakis, A., Tzanakakis, G. N., & Nikitovic, D., 2021, Lumican in Carcinogenesis-Revisited. Biomolecules, 11(9), 1319. https://doi.org/10.3390/biom11091319

[4].  Lee, H., & Kang, K. T., 2021, Differential angiogenic responses of human endothelial colony-forming cells to different molecular subtypes of breast cancer cells. Journal of lipid and atherosclerosis10(1), 111–122. https://doi.org/10.12997/jla.2021.10.1.111.

[5].  Shibuya M., 2011, Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes & cancer, 2(12), 1097–1105. https://doi.org/10.1177/1947601911423031

[6].  Miricescu, D., Totan, A., Stanescu-Spinu, I. I., Badoiu, S. C., Stefani, C., & Greabu, M., 2020, PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From molecular landscape to clinical aspects. International Journal of Molecular Sciences, 22(1), 173. https://doi.org/10.3390/ijms22010173

[7].  Madu, C. O., Wang, S., Madu, C. O., & Lu, Y., 2020, Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. Journal of Cancer, 11(15), 4474–4494. https://doi.org/10.7150/jca.44313

[8].  Bui, B. P., Nguyen, P. L., Lee, K., & Cho, J., 2022, Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers, 14(24), 6054. https://doi.org/10.3390/cancers14246054

[9].  Jayaraman, S., Veeraraghavan, V. P., Natarajan, S. R., & Jasmine, S., 2024, Exploring the therapeutic potential of curcumin in oral squamous cell carcinoma (HSC-3 cells): Molecular insights into hypoxia-mediated angiogenesis. Pathology-Research and Practice254, 155130.

[10]. Krock, B. L., Skuli, N., & Simon, M. C., 2011, Hypoxia-induced angiogenesis: good and evil. Genes & Cancer, 2(12), 1117–1133. https://doi.org/10.1177/1947601911423654

[11]. Yang, F., Lee, G., & Fan, Y., 2024, Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis, 10.1007/s10456-024-09913-z. Advance online publication. https://doi.org/10.1007/s10456-024-09913-z

[12]. Saman, H., Raza, S. S., Uddin, S., & Rasul, K., 2020, Inducing Angiogenesis, a Key Step in Cancer Vascularization, and Treatment Approaches. Cancers12(5), 1172. https://doi.org/10.3390/cancers12051172

[13]. Liu, X., Hu, Y. J., Chen, B., Min, L., Peng, X. S., Zhao, J., Li, S., Wong, H. N. C., & Li, C. C., 2017, Asymmetric Total Syntheses of Colchicine, β-Lumicolchicine, and Allocolchicinoid N-Acetylcolchinol-O-methyl Ether (NCME). Organic Letters, 19(17), 4612–4615. https://doi.org/10.1021/acs.orglett.7b02224

[14]. Chen, S., Shen, X., Cheng, S., Li, P., Du, J., Chang, Y., & Meng, H., 2013, Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PloS One, 8(11), e79730. https://doi.org/10.1371/journal.pone.0079730

[15]. Khan, M. W. A., Otaibi, A. A., Alsukaibi, A. K. D., Alshammari, E. M., Al-Zahrani, S. A., Sherwani, S., Khan, W. A., Saha, R., Verma, S. R., & Ahmed, N., 2022, Biophysical, biochemical, and molecular docking investigations of anti-glycating, antioxidant, and protein structural stability potential of garlic. Molecules (Basel, Switzerland), 27(6), 1868. https://doi.org/10.3390/molecules27061868

[16]. Wu, X. X., Yue, G. G., Dong, J. R., Lam, C. W., Wong, C. K., Qiu, M. H., & Lau, C. B., (2018). actein inhibits the proliferation and adhesion of human breast cancer cells and suppresses migration in vivo. Frontiers in Pharmacology, 9, 1466. https://doi.org/10.3389/fphar.2018.01466

[17]. Jayaraman, S., Natararaj, S., & Veeraraghavan, V. P., 2024, hesperidin inhibits oral cancer cell growth via apoptosis and inflammatory signaling-mediated mechanisms: evidence from in vitro and in silico analyses. Cureus, 16(2), e53458. https://doi.org/10.7759/cureus.53458

[18]. Hagras, M., El Deeb, M. A., Elzahabi, H. S. A., Elkaeed, E. B., Mehany, A. B. M., & Eissa, I. H., 2021, Discovery of new quinolines as potent colchicine binding site inhibitors: design, synthesis, docking studies, and anti-proliferative evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 640–658. https://doi.org/10.1080/14756366.2021.1883598.

[19]. Pradeep, V. R., Menaka, S., Suresh, V., & Jayaraman, S., 2024, Anticancer Effects of Rosmarinus officinalis Leaf Extract on KB Cell Lines. Cureus, 16(2), e54031. https://doi.org/10.7759/cureus.54031.

[20]. Perumal, S., Langeshwaran, K., Selvaraj, J., Ponnulakshmi, R., Shyamaladevi, B., & Balasubramanian, M. P., 2018, Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Molecular And Cellular Biochemistry, 449(1-2), 27–37. https://doi.org/10.1007/s11010-018-3339-3.