Molecular Approach to Identify Antitumorigenic Potential of Lumicolchicine in MCF-7 cells: Evidence Through Angiogenic Signalling
Abstract:
Breast cancer remains a leading cause of mortality among women
worldwide, highlighting the urgent need for new therapeutic agents. This study
evaluates the cytotoxicity of Lumicolchicine (LMC) against the MCF-7 breast
cancer cell line using both in vitro and in silico methods, with a focus on
angiogenic signaling pathways. The in vitro assessment involved treating MCF-7
cells with varying concentrations of LMC and measuring cell viability using the
MTT assay. Results indicated a dose-dependent reduction in cell proliferation,
demonstrating LMC's cytotoxicity. To explore the molecular mechanisms
underlying LMC's effects, we conducted in silico molecular docking studies on
angiogenic signaling proteins: HIF1A, AKT, mTOR, VEGF, and ERK. The simulations
revealed strong binding affinities of LMC to these targets, suggesting
inhibition of angiogenic pathways crucial for tumor growth and metastasis.
Further validation through quantitative PCR and Western blot analyses confirmed
these findings, showing decreased expression levels of VEGF, VEGFR2, and HIF-1α
in treated MCF-7 cells, supporting the notion that LMC suppresses angiogenesis.
In summary, our combined in vitro and in silico findings suggest that
Lumicolchicine has significant potential as an antitumor agent against breast
cancer by targeting and inhibiting angiogenic signaling pathways. This study
provides a foundation for future preclinical and clinical investigations into
Lumicolchicine's use in breast cancer therapy.
References:
[1]. Łukasiewicz, S.,
Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A., 2021,
Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers,
and Current Treatment Strategies-An Updated Review. Cancers, 13(17),
4287. https://doi.org/10.3390/cancers13174287
[2]. Miziak, P., Baran, M.,
Błaszczak, E., Przybyszewska-Podstawka, A., Kałafut, J., Smok-Kalwat, J.,
Dmoszyńska-Graniczka, M., Kiełbus, M., & Stepulak, A., 2023, Estrogen
Receptor Signaling in Breast Cancer. Cancers, 15(19), 4689. https://doi.org/10.3390/cancers15194689
[3]. Giatagana, E. M.,
Berdiaki, A., Tsatsakis, A., Tzanakakis, G. N., & Nikitovic, D., 2021,
Lumican in Carcinogenesis-Revisited. Biomolecules, 11(9), 1319. https://doi.org/10.3390/biom11091319
[4]. Lee, H., & Kang, K. T., 2021, Differential angiogenic
responses of human endothelial colony-forming cells to different molecular
subtypes of breast cancer cells. Journal of lipid and atherosclerosis, 10(1),
111–122. https://doi.org/10.12997/jla.2021.10.1.111.
[5]. Shibuya M., 2011,
Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in
angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes
& cancer, 2(12), 1097–1105. https://doi.org/10.1177/1947601911423031
[6]. Miricescu, D., Totan,
A., Stanescu-Spinu, I. I., Badoiu, S. C., Stefani, C., & Greabu, M., 2020,
PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From molecular landscape to
clinical aspects. International Journal of Molecular Sciences, 22(1),
173. https://doi.org/10.3390/ijms22010173
[7]. Madu, C. O., Wang, S.,
Madu, C. O., & Lu, Y., 2020, Angiogenesis in Breast Cancer Progression,
Diagnosis, and Treatment. Journal of Cancer, 11(15), 4474–4494. https://doi.org/10.7150/jca.44313
[8]. Bui, B. P., Nguyen, P.
L., Lee, K., & Cho, J., 2022, Hypoxia-Inducible Factor-1: A Novel
Therapeutic Target for the Management of Cancer, Drug Resistance, and
Cancer-Related Pain. Cancers, 14(24), 6054. https://doi.org/10.3390/cancers14246054
[9]. Jayaraman, S., Veeraraghavan, V. P., Natarajan, S.
R., & Jasmine, S., 2024, Exploring the therapeutic potential of curcumin in
oral squamous cell carcinoma (HSC-3 cells): Molecular insights into
hypoxia-mediated angiogenesis. Pathology-Research
and Practice, 254,
155130.
[10]. Krock, B. L., Skuli, N.,
& Simon, M. C., 2011, Hypoxia-induced angiogenesis: good and evil. Genes
& Cancer, 2(12), 1117–1133. https://doi.org/10.1177/1947601911423654
[11]. Yang, F., Lee, G., & Fan, Y., 2024, Navigating
tumor angiogenesis: therapeutic perspectives and myeloid cell regulation
mechanism. Angiogenesis, 10.1007/s10456-024-09913-z. Advance online
publication. https://doi.org/10.1007/s10456-024-09913-z
[12]. Saman, H., Raza, S. S., Uddin, S., & Rasul,
K., 2020, Inducing Angiogenesis, a Key Step in Cancer Vascularization, and
Treatment Approaches. Cancers, 12(5), 1172. https://doi.org/10.3390/cancers12051172
[13]. Liu, X., Hu, Y. J.,
Chen, B., Min, L., Peng, X. S., Zhao, J., Li, S., Wong, H. N. C., & Li, C.
C., 2017, Asymmetric Total Syntheses of Colchicine, β-Lumicolchicine, and
Allocolchicinoid N-Acetylcolchinol-O-methyl Ether (NCME). Organic Letters,
19(17), 4612–4615. https://doi.org/10.1021/acs.orglett.7b02224
[14]. Chen, S., Shen, X.,
Cheng, S., Li, P., Du, J., Chang, Y., & Meng, H., 2013, Evaluation of
garlic cultivars for polyphenolic content and antioxidant properties. PloS One,
8(11), e79730. https://doi.org/10.1371/journal.pone.0079730
[15]. Khan, M. W. A., Otaibi,
A. A., Alsukaibi, A. K. D., Alshammari, E. M., Al-Zahrani, S. A., Sherwani, S.,
Khan, W. A., Saha, R., Verma, S. R., & Ahmed, N., 2022, Biophysical, biochemical,
and molecular docking investigations of anti-glycating, antioxidant, and
protein structural stability potential of garlic. Molecules (Basel,
Switzerland), 27(6), 1868. https://doi.org/10.3390/molecules27061868
[16]. Wu, X. X., Yue, G. G.,
Dong, J. R., Lam, C. W., Wong, C. K., Qiu, M. H., & Lau, C. B., (2018). actein
inhibits the proliferation and adhesion of human breast cancer cells and
suppresses migration in vivo. Frontiers
in Pharmacology, 9, 1466. https://doi.org/10.3389/fphar.2018.01466
[17]. Jayaraman, S., Natararaj, S., & Veeraraghavan,
V. P., 2024, hesperidin inhibits oral cancer cell growth via apoptosis and
inflammatory signaling-mediated mechanisms: evidence from in vitro and in
silico analyses. Cureus, 16(2), e53458. https://doi.org/10.7759/cureus.53458
[18]. Hagras, M., El Deeb, M.
A., Elzahabi, H. S. A., Elkaeed, E. B., Mehany, A. B. M., & Eissa, I. H.,
2021, Discovery of new quinolines as potent colchicine binding site inhibitors:
design, synthesis, docking studies, and anti-proliferative evaluation. Journal
of Enzyme Inhibition and Medicinal Chemistry, 36(1), 640–658. https://doi.org/10.1080/14756366.2021.1883598.
[19]. Pradeep, V. R., Menaka,
S., Suresh, V., & Jayaraman, S., 2024, Anticancer Effects of Rosmarinus
officinalis Leaf Extract on KB Cell Lines. Cureus, 16(2), e54031. https://doi.org/10.7759/cureus.54031.
[20]. Perumal, S., Langeshwaran, K., Selvaraj, J., Ponnulakshmi, R., Shyamaladevi, B., & Balasubramanian, M. P., 2018, Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Molecular And Cellular Biochemistry, 449(1-2), 27–37. https://doi.org/10.1007/s11010-018-3339-3.