A Comprehensive Review on Therapeutic Implications of Medicinal Plants in Ovarian Cancer
Abstract:
Although ovarian cancer is the fifth most common cancer in women, it is the eleventh most common cancer. Ovarian cancer accounts for about 2.5% of all cancers in women. The most lethal type of gynecologic cancer is ovarian cancer. Ovarian cancer treatment has become more challenging as a result of inadequate early diagnosis and chemoresistance. Every microanatomic subtype had a specific molecular and epigenetic fingerprint associated with it. According to its histology, OC was divided into four subtypes, of which epithelial ovarian cancer (EOC) is more common than the others. Medicinal plants have contributed a vital role in the therapy of cancer. since ancient times, and the advantage of herbs is that they are less toxic to the human system compared to commercially available drugs. The majority of medicinal plants increase the effectiveness of chemotherapy, allowing us to reduce patient chemoresistance, which caught the attention of researchers. In this overview, we emphasize the role of Scutellaria barbata, Camellia sinensis, curcumin, ashwagandha, Leea indica, Garcinia, Asparagus and Cnidium monnier in ovarian cancer cells' molecular mechanisms.References:
[1].
Kurman, R. J., & Shih, I. M., 2011, Molecular pathogenesis and
extraovarian origin of epithelial ovarian cancer–shifting the paradigm. Hum. Pathol.
42, 918–931. 10.1016/j.humpath.2011.03.003.
[2]. Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P.
& Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting
the suppression of oral cancer cells through extrinsic and intrinsic signalling
mechanisms. The Saudi Dental Journal, 35(8), pp.1007-1013.
[3]. Krishnan, R. P., Pandiar, D., Ramani, P. and Jayaraman, S., 2025,
Molecular profiling of oral epithelial dysplasia and oral squamous cell
carcinoma using next generation sequencing. Journal of Stomatology,
Oral and Maxillofacial Surgery, 126(4), p.102120.
[4]. Tavassoli, M., Ruhrberg, C., Beaumont, V., Reynolds, K., Kirkham, N.,
Collins, W. P., & Farrin Farzaneh, F., 1993, Whole Chromosome 17 Loss in
Ovarian Cancer. GENES, CHROMOSOMES & CANCER &I95498. 10.1002/gcc.2870080310.
[5]. Chisholm, K. M., Goff, B. A., Garcia, R., King, M. C. & Swisher, E.
M., 2008, Genomic structure of chromosome 17 deletions in BRCA1 associated
ovarian cancers. Cancer Genet Cytogenet. May; 183(1): 41–48.
10.1016/j.cancergencyto.2008.02.00.
[6]. Shen H, Fridley B. L, Song H, Lawrenson K, Cunningham J. M, Ramus S. J,
Cicek M. S, Tyrer J, Stram D, Larson M. C, 2013, Epigenetic analysis leads to
identification of HNF1B as a subtype-specific susceptibility gene for ovarian
cancer. Nat. Commun 2013, 4. 10.1038/ncomms2629.
[7]. Mabuchi, S., Kawase, C., Altomare, D. A., Morishige, K., Sawada, K.,
Hayashi, M., Tsujimoto, M., Yamoto, M., Klein-Szanto, A. J., Schilder, R. J.,
Ohmichi, M., Testa, J. R., & Kimura, T., 2009, mtor is a promising
therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear
cell carcinoma of the ovary. Clin Cancer Res., 15(17), 5404–5413.
doi: 10.1158/1078-0432.CCR-09-0365.
[8]. Jayson, G. C., Kohn, E. C., Kitchener, H. C., & Ledermann, J. A.,
2014, Ovarian Cancer. The Lancet, 384, 1376–1388. 10.1016/S0140-6736(13)62146-7.
[9]. Banerjee, S., & Kaye, S. B., 2013, New strategies in the treatment
of ovarian cancer: Current clinical perspectives and future potential.
Clinical Cancer Research, 19, 961–968. 10.1158/1078-0432.CCR-12-2243.
[10]. Sruthi, M. A., Mani, G., Ramakrishnan, M. and Selvaraj, J., 2023, Dental
caries as a source of Helicobacter pylori infection in children: An RT‐PCR
study. International Journal of Paediatric Dentistry, 33(1),
pp.82-88.
[11]. Chen, Q., Rahman, K., Wang, S.-J., Zhou, S., & Zhang, H., 2019,
Scutellaria barbata: A Review on Chemical Constituents, Pharmacological
Activities and Clinical Applications. PMID: 31840605.
10.2174/1381612825666191216124310.
[12]. Gao, J., Yin, W., & Corcoran, O., 2019, From Scutellaria barbata to
BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence.
Journal of Natural Medicines. 10.1177/1934578X19880645.
[13]. Lin, Z.,
Ren, B., Zhang, J., Liu, L., Liu, J., Jiang, G., Li, M., Ding, Y., & Li,
W., 2017, Anti-tumor effect of Scutellaria barbata D. Don extracts on
ovarian cancer and its phytochemicals characterisation. Journal of
Ethnopharmacology, 206, 184-192. 10.1016/j.jep.2017.05.032.
[14]. Xiao, X.,
Chen, F., Zhang, L., Liu, L., Zhang, C., Zhang, Z., & Li, W., 2021,
Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa
Willd and Scutellaria barbata D. Don through focal adhesion pathway. Journal
of Ethnopharmacology. 10.1016/j.jep.2021.114343.
[15]. Jie, L.,
Wang, Y., Lei, J.-C., Hao, Y., Yang, Y., Yang, C.-X., & Yu, J.-Q., 2014,
Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria
barbata. Natural Product Research, 28(10), 683–689. 10.1080/14786419.2013.871547.
[16]. Jayaraman,
S., Natarajan, S. R., Veeraraghavan, V. P. and Jasmine, S., 2023, Unveiling the
anti-cancer mechanisms of calotropin: Insights into cell growth inhibition,
cell cycle arrest, and metabolic regulation in human oral squamous carcinoma
cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6),
pp.704-713.
[17]. Wang,
Z.-L., Wang, S., Kuang, Y., Hu, Z.-M., Qiao, X., & Ye, M., 2018, A
comprehensive review on phytochemistry, pharmacology, and flavonoid
biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology,
56(1), 465–484. 10.1080/13880209.2018.1492620.
[18]. Wogonin | C16H12O5 | CID 5281703 – PubChem.
[19]. Jiang, R.,
Jin, B., Wan, D., Zhu, C., Feng, J., & Gu, L., 2017, Therapy Effects of
Wogonin on Ovarian Cancer Cells. BioMed Research International, 1–8.
10.1155/2017/9381513.
[20]. Feng, X.,
Cong, S., Ning, L., Yuanying, H., Mengmeng, C., Siyu, D., Chenghua, L., Lijin,
F., & Zhongping, C., 2019, Wogonin Increases Cisplatin Sensitivity in
Ovarian Cancer Cells Through Inhibition of the Phosphatidylinositol 3-Kinase
(PI3K)/Akt Pathway. Med Sci Monit., 25, 6007–6014. 10.12659/MSM.913829.
[21].Nemecz, G., 2002,
Green tea. The Journal of Modern Pharmacy.
[22]. Roychoudhury,
S., Halenar, M., Michalcova, K., Natha, S., Kacaniova, M., & Kolesarova,
A., 2018, Green tea extract affects porcine ovarian cell apoptosis. Reprod
Biol., 18(1), 94–98. 10.1016/j.repbio.2018.01.007.
[23]. Spinella,
F., Rosano, L., Di Castro, V., Decandia, S., Albini, A., Nicotra, M. R.,
Natali, P. G., & Bagnato, A., 2006, Green tea polyphenol
epigallocatechin-3-gallate inhibits the endothelin axis and downstream
signaling pathways in ovarian carcinoma. Mol Cancer Ther., 5(6),
1483–1492. 10.1158/1535-7163.MCT-06-0053.
[24]. Huh, S.
W., Bae, S. M., Han, C. H., Choi, J. H., Kim, C. K., Park, E. K., Ro, D. Y.,
Lee, J. M., Namkoong, S. E., & Ahn, W. S., 2004, Anti-Tumor Effects of
Epigallocatechin-3-Gallate Extracted From Green Tea On Ovarian Cancer Cell
Lines. Korean Journal of Obstetrics and Gynecology, 634-649.
[25]. Yasothkumar,
D., Ramani, P., Jayaraman, S., Ramalingam, K. and Tilakaratne, W. M., 2024,
Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral
Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous
Fibrosis. Head and Neck Pathology, 18(1), p.28.
[26]. Pianetti,
S., Guo, S., Kavanagh, K. T., & Sonenshein, G. E., 2002, Green tea
polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling,
proliferation, and transformed phenotype of breast cancer cells. Cancer
Research, 62(3), 652-655.
[27]. Przystupski,
D., Michel, O., Rossowska, J., Kwiatkowski, S., Saczko, J., & Kulbacka, J.,
2019, The modulatory effect of green tea catechin on drug resistance in human
ovarian cancer cells. Medicinal Chemistry Research, 28, 657-667.
[28]. Sicard, A.
A., Gonzalez Suarez, N., Cappadocia, L., & Annabi, B., 2021,Functional
targeting of the TGF-βR1 kinase domain and downstream signaling: A role for the
galloyl moiety of green tea-derived catechins in ES-2 ovarian clear cell
carcinoma. The Journal of Nutritional Biochemistry, 87, 108518. https://doi.org/10.1016/j.jnutbio.2020.108518
[29]. Maity, R.,
Chatterjee, M., Banerjee, A., Das, A., Mishra, R., Mazumder, S., & Chanda,
N., 2019, Gold nanoparticle-assisted enhancement in the anti-cancer properties
of theaflavin against human ovarian cancer cells. Materials Science and
Engineering: C, 109909. https://doi.org/10.1016/j.msec.2019.109909
[30]. Zhang, M.,
Lee, A. H., Binns, C. W., & Xie, X., 2004, Green tea consumption enhances
survival of epithelial ovarian cancer. International Journal of Cancer,
112(3), 465–469. https://doi.org/10.1002/ijc.20456
[31]. Pazhani,
J., Chanthu, K., Jayaraman, S. and Varun, B. R., 2023, Evaluation of salivary
MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal
of Oral and Maxillofacial Pathology, 27(4), pp.649-654.
[32]. Panji, M.,
Behmard, V., Zare, Z., Malekpour, M., Nejadbiglari, H., Yavari, S.,
Nayerpoudizaj, T., Safaeian, A., Bakhshi, A., Abazari, O., Abbasi, M.,
Khanicheragh, P., & Shabanzadeh, M., 2021, Synergistic effects of green tea
extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian
cancer cell lines. Gene, 787, 145638. 10.1016/j.gene.2021.145638.
[33]. Fathima,
J. S., Jayaraman, S., Sekar, R. and Syed, N. H., 2024, The role of MicroRNAs in
the diagnosis and treatment of oral premalignant disorders. Odontology,
pp.1-10.
[34]. Chen, H.,
Landen, C. N., Li, Y., Alvarez, R. D., & Tollefsbol, T. O., 2013,
Epigallocatechin gallate and sulforaphane combination treatment induce
apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2
down-regulation. Experimental Cell Research, 319(5), 697–706. http://dx.doi.org/10.1016/j.yexcr.2012.12.026.
[35]. Lestari,
M. L. A. D., & Indrayanto, G., 2015, Antiproliferation and apoptosis
induced by curcumin in human ovarian cancer cells. Curcumin.
10.1016/b978-0-12-800173-8.00003-9. doi: 10.1016/j.cellbi.2005.10.024
[36]. Shishodia,
S., Chaturvedi, M. M., & Aggarwal, B. B., 2007, Role of curcumin in cancer
therapy. Current Problems in Cancer, 31, 243-305.
10.1016/j.currproblcancer.2007.04.001
[37]. Sahin, K.,
Orhan, C., Tuzcu, M., Sahin, N., Tastan, H., Özercan, İ. H., Güler, O.,
Kahraman, N., Kucuk, O., & Ozpolat, B., 2017, Chemopreventive and antitumor
efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer
Prevention Research, PMID: 29089332. DOI: 10.1158/1940-6207.CAPR-16-0289
[38]. Murali, M.
Yallapu, Diane M. Maher, Vasudha Sundram, Maria C. Bell, Meena Jaggi, &
Subhash C. Chauhan, 2010, Curcumin induces chemo/radio-sensitization in ovarian
cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. Journal
of Ovarian Research, 3, Article 11. 10.1186/1757-2215-3-11.
[39]. Sagar, S.,
Ramani, P., Moses, S., Gheena, S. and Selvaraj, J., 2024, Correlation of
salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients
undergoing orthodontic treatment. Odontology, pp.1-10.
[40]. Wei, P.,
Hui, Y., Cong, C., Xiuzu, S., Brittany, W., Rebecca, K., Shan, L., Gang, H.,
Wen, D., & Yinsheng, W., 1994, AMPK mediates curcumin-induced cell death in
CAOV3 ovarian cancer cells. Oncology Reports. 10.3892/or_00000179.
[41]. Seo, J.,
Kim, B., Dhanasekaran, D. N., Tsang, B. K., & Song, Y. S., 2016, Curcumin
induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase
activity in ovarian cancer cells. Cancer Letters, 371(1), 30-37.
10.1016/j.canlet.2015.11.021.
[42]. Yuzhu, H.,
Mengni, R., Bilan, W., Yunzhu, L., Yongzhong, C., & Songping, Z., 2020,
Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing
Anti-Ovarian Cancer Treatment. International Journal of Nanomedicine,
15, 9703-9715. 10.2147/IJN.S274083.
[43]. Muhanmode,
Y., Yalikun, W., Meng Ke, M., Maitinuri, A., Amina, S., & Shen, G., 2022,
Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant
epithelial ovarian cancer cells via targeting PI3K pathway. Human &
Experimental Toxicology, 41, 9603271221095929. 10.1177/09603271221095929.
[44]. Mishra, L.
C., Singh, B. B., & Dagenais, S., 2000, Scientific basis for the
therapeutic use of Withania somnifera (Ashwagandha): A review. Alternative
Medicine Reviews, 5, 334-346.
[45]. Bhattacharya,
S. K., Goel, R. K., Kaur, R., & Ghosal, S., 1987, Anti-stress activity of
Sitoindosides VII and VIII. New Acylsterylglucosides from Withania
somnifera. Phytotherapy Research, 1, 32-37.
[46]. Barua, A.,
Bradaric, M. J., Bitterman, P., Abramowicz, J. S., Sharma, S., Basu, S., Lopez,
H., Bahr, J. M., 2013, Dietary Supplementation of Ashwagandha (Withania
somnifera, Dunal) Enhances NK Cell Function in Ovarian Tumors in the
Laying Hen Model of Spontaneous Ovarian Cancer. AJI,
10.1111/aji.12172.
[47]. Kakar, S. S.,
Ratajczak, M. Z., Powell, K. S., Moghadamfalahi, M., Miller, D. M., Batra, S. K.,
& Singh, S. K., 2014, Withaferin A Alone and in Combination with Cisplatin
Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer
Stem Cells. PLOS ONE, 10.1371/journal.pone.0107596.
[48]. Neo, S.
Y., Siew, Y. Y., Yew, H. C., He, Y., Poh, K. L., Tsai, Y. C., Ng, S. L., Tan,
W. X., Chong, T. I., Lim, C. S. E. S., Ho, S. W., Singh, D., Ali, A., Linn, Y.
C., Tan, C. H., Seow, S. V., & Koh, H. L., 2023, Effects of Leea indica
leaf extracts and its phytoconstituents on natural killer cell-mediated
cytotoxicity in human ovarian cancer. BMC Complementary Medicine and
Therapies, 10.1186/s12906-023-03904-1.
[49]. Sairam,
K., Priyambada, S., Aryya, N. C., & Goel, R. K., 2003, Gastroduodenal ulcer
protective activity of Asparagus racemosus: an experimental,
biochemical and histological study. Biological and Pharmaceutical Bulletin,
PMID: 12686434, 10.1016/s0378-8741(02)00342-2.
[50]. Kalai Vani, S., Sivakumar, G., Geetha, R. V., & Vishnu Priya, V.,
2019, Invitro cytotoxic activity of Asparagus racemosus on ovarian carcinoma
cell lines (SKOV-3) by 3-(4, 5-dimethythiazol-2-yl) -2, 5-diphenyl tetrazolium
bromide assay. Drug Invention Today, 12(6), 1162.
[51]. Zhang, X., Wang, J., Fan, Y., Zhao, Z., Paraghamian, S. E., Hawkins, G.
M., Buckingham, L., O’Donnell, J., Hao, T., Suo, H., Yin, Y., Sun, W., Kong,
W., Sun, D., Zhao, L., Zhou, C., & Bae Jump, V. L., 2023, Asparagus
officinalis combined with paclitaxel exhibited synergistic anti-tumor activity
in paclitaxel sensitive and resistant ovarian cancer cells. Journal of
Cancer Research and Clinical Oncology, 149, 3871–3883.
[52]. Hemashekhar, M., Sunitha, K., Santhosh, M. S., Devaraja, S., Kemparaju,
K., Vishwanath, B. S., Niranjana, S. R., & Girish, K. S., 2011, An overview
on genus Garcinia: Phytochemical and therapeutical aspects. Phytochemistry
Reviews, 10, 325-351. https://doi.org/10.1007/s11101-011-9207-3
[53]. Yang, R., Li, P., Li, N., Zhang, Q., Bai, X., Wang, L., Xiao, Y., Sun,
L., Yang, Q., & Yan, J., 2017, Xanthones from the pericarp of Garcinia
mangostana. Molecules, 22(5), 683. https://doi.org/10.3390/molecules22050683.
[54]. https://pubchem.ncbi.nlm.nih.gov/compound/10298511.
[55]. Xu, X. H., Liu, Q. Y., Li, T., Liu, J. L., Chen, X., Huang, L., Qiang,
W. A., Chen, X., Wang, Y., Lin, L. G., & Lu, J. J., 2017, Garcinone E
induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Scientific
Reports, 7, 10718. https://doi.org/10.1038/s41598-017-11417-4
[56]. https://pubchem.ncbi.nlm.nih.gov/substance/134222836.
[57]. Setyawati, L. U., Nurhidayah, W., Khairul Ikram, N. K., Mohd Fuad, W. E.,
& Muchtaridi, M., 2023, General toxicity studies of alpha mangostin
from Garcinia mangostana: A systematic review. Heliyon, 9(5):e16045.
doi:10.1016/j.heliyon.2023.e16045.
[58]. Ittiudomrak, T., Puthong, S., Roytrakul, S., & Chanchao, C., 2019,
α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in
SKOV-3 Ovarian Cancer Cells. Toxicological Research, 35(2),
167–179. doi:10.5487/TR.2019.35.2.167.
[59]. Yu, Y., Fei, Z., & Qin, L., 2020, Anticancer effects of α-mangostin
in OVACAR-3 human ovarian carcinoma cells are mediated via involvement of
reactive oxygen species, mitochondrial –mediated apoptosis, suppression of cell
migration and invasion and m-TOR/PI3K/AKT signaling
pathway. JBUON, 25(5), 2294.
[60]. Zhang, Z.-R., Leung, W. N., Cheung, H. Y., & Chan, C. W., 2015,
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and
Potential as Alternative Medicine. Evidence-Based Complementary and
Alternative Medicine, 2015, 1–10. doi:10.1155/2015/919616.
[61]. Jiang, G., Liu, J., Ren, B., Tang, Y., Owusu, L., Li, M., Zhang, J.,
Liu, L., & Li, W., 2016, Anti-tumor effects of osthole on ovarian cancer
cells in vitro. Journal of Ethnopharmacology, 193, 368–376.
doi:10.1016/j.jep.2016.08.045.
[62]. Liang, J., Zhou, J., Xu, Y., Huang, X., Wang, X., Huang, W., & Li,
H., 2020, Osthole inhibits ovarian carcinoma cells through LC3-mediated
autophagy and GSDME-dependent pyroptosis except for apoptosis. European
Journal of Pharmacology, 874, 172990.
doi:10.1016/j.ejphar.2020.172990.