A Comprehensive Review on Therapeutic Implications of Medicinal Plants in Ovarian Cancer

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.01.Art001

Authors : Ponnulakshmi R, Sridevi Gopathy, Kritika C, R. Hemalatha, Heera Maheswari Jayaveeran, Manju Parthiban, K Viswaja, Varun BR

Abstract:

Although ovarian cancer is the fifth most common cancer in women, it is the eleventh most common cancer. Ovarian cancer accounts for about 2.5% of all cancers in women. The most lethal type of gynecologic cancer is ovarian cancer. Ovarian cancer treatment has become more challenging as a result of inadequate early diagnosis and chemoresistance. Every microanatomic subtype had a specific molecular and epigenetic fingerprint associated with it. According to its histology, OC was divided into four subtypes, of which epithelial ovarian cancer (EOC) is more common than the others. Medicinal plants have contributed a vital role in the therapy of cancer. since ancient times, and the advantage of herbs is that they are less toxic to the human system compared to commercially available drugs. The majority of medicinal plants increase the effectiveness of chemotherapy, allowing us to reduce patient chemoresistance, which caught the attention of researchers. In this overview, we emphasize the role of Scutellaria barbata, Camellia sinensis, curcumin, ashwagandha, Leea indica, Garcinia, Asparagus and Cnidium monnier in ovarian cancer cells' molecular mechanisms.

References:

[1].  Kurman, R. J., & Shih, I. M., 2011, Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer–shifting the paradigm. Hum. Pathol. 42, 918–931. 10.1016/j.humpath.2011.03.003.

[2].  Jayaraman, S., Natarajan, S. R., Ponnusamy, B., Veeraraghavan, V. P. & Jasmine, S., 2023, Unlocking the potential of beta sitosterol: Augmenting the suppression of oral cancer cells through extrinsic and intrinsic signalling mechanisms. The Saudi Dental Journal, 35(8), pp.1007-1013.

[3].  Krishnan, R. P., Pandiar, D., Ramani, P. and Jayaraman, S., 2025, Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. Journal of Stomatology, Oral and Maxillofacial Surgery, 126(4), p.102120.

[4].  Tavassoli, M., Ruhrberg, C., Beaumont, V., Reynolds, K., Kirkham, N., Collins, W. P., & Farrin Farzaneh, F., 1993, Whole Chromosome 17 Loss in Ovarian Cancer. GENES, CHROMOSOMES & CANCER &I95498. 10.1002/gcc.2870080310.

[5].  Chisholm, K. M., Goff, B. A., Garcia, R., King, M. C. & Swisher, E. M., 2008, Genomic structure of chromosome 17 deletions in BRCA1 associated ovarian cancers. Cancer Genet Cytogenet. May; 183(1): 41–48. 10.1016/j.cancergencyto.2008.02.00.

[6].  Shen H, Fridley B. L, Song H, Lawrenson K, Cunningham J. M, Ramus S. J, Cicek M. S, Tyrer J, Stram D, Larson M. C, 2013, Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat. Commun 2013, 4. 10.1038/ncomms2629.

[7].  Mabuchi, S., Kawase, C., Altomare, D. A., Morishige, K., Sawada, K., Hayashi, M., Tsujimoto, M., Yamoto, M., Klein-Szanto, A. J., Schilder, R. J., Ohmichi, M., Testa, J. R., & Kimura, T., 2009, mtor is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res., 15(17), 5404–5413. doi: 10.1158/1078-0432.CCR-09-0365.

[8].  Jayson, G. C., Kohn, E. C., Kitchener, H. C., & Ledermann, J. A., 2014, Ovarian Cancer. The Lancet, 384, 1376–1388. 10.1016/S0140-6736(13)62146-7.

[9].  Banerjee, S., & Kaye, S. B., 2013, New strategies in the treatment of ovarian cancer: Current clinical perspectives and future potential. Clinical Cancer Research, 19, 961–968. 10.1158/1078-0432.CCR-12-2243.

[10]. Sruthi, M. A., Mani, G., Ramakrishnan, M. and Selvaraj, J., 2023, Dental caries as a source of Helicobacter pylori infection in children: An RT‐PCR study. International Journal of Paediatric Dentistry, 33(1), pp.82-88.

[11]. Chen, Q., Rahman, K., Wang, S.-J., Zhou, S., & Zhang, H., 2019, Scutellaria barbata: A Review on Chemical Constituents, Pharmacological Activities and Clinical Applications. PMID: 31840605. 10.2174/1381612825666191216124310.

[12]. Gao, J., Yin, W., & Corcoran, O., 2019, From Scutellaria barbata to BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence. Journal of Natural Medicines. 10.1177/1934578X19880645.

[13]. Lin, Z., Ren, B., Zhang, J., Liu, L., Liu, J., Jiang, G., Li, M., Ding, Y., & Li, W., 2017, Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. Journal of Ethnopharmacology, 206, 184-192. 10.1016/j.jep.2017.05.032.

[14]. Xiao, X., Chen, F., Zhang, L., Liu, L., Zhang, C., Zhang, Z., & Li, W., 2021, Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway. Journal of Ethnopharmacology. 10.1016/j.jep.2021.114343.

[15]. Jie, L., Wang, Y., Lei, J.-C., Hao, Y., Yang, Y., Yang, C.-X., & Yu, J.-Q., 2014, Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria barbata. Natural Product Research, 28(10), 683–689. 10.1080/14786419.2013.871547.

[16]. Jayaraman, S., Natarajan, S. R., Veeraraghavan, V. P. and Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Journal of Oral Biology and Craniofacial Research, 13(6), pp.704-713.

[17]. Wang, Z.-L., Wang, S., Kuang, Y., Hu, Z.-M., Qiao, X., & Ye, M., 2018, A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology, 56(1), 465–484. 10.1080/13880209.2018.1492620.

[18]. Wogonin | C16H12O5 | CID 5281703 – PubChem.

[19]. Jiang, R., Jin, B., Wan, D., Zhu, C., Feng, J., & Gu, L., 2017, Therapy Effects of Wogonin on Ovarian Cancer Cells. BioMed Research International, 1–8. 10.1155/2017/9381513.

[20]. Feng, X., Cong, S., Ning, L., Yuanying, H., Mengmeng, C., Siyu, D., Chenghua, L., Lijin, F., & Zhongping, C., 2019, Wogonin Increases Cisplatin Sensitivity in Ovarian Cancer Cells Through Inhibition of the Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med Sci Monit., 25, 6007–6014. 10.12659/MSM.913829.

[21].Nemecz, G., 2002, Green tea. The Journal of Modern Pharmacy.

[22]. Roychoudhury, S., Halenar, M., Michalcova, K., Natha, S., Kacaniova, M., & Kolesarova, A., 2018, Green tea extract affects porcine ovarian cell apoptosis. Reprod Biol., 18(1), 94–98. 10.1016/j.repbio.2018.01.007.

[23]. Spinella, F., Rosano, L., Di Castro, V., Decandia, S., Albini, A., Nicotra, M. R., Natali, P. G., & Bagnato, A., 2006, Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther., 5(6), 1483–1492. 10.1158/1535-7163.MCT-06-0053.

[24]. Huh, S. W., Bae, S. M., Han, C. H., Choi, J. H., Kim, C. K., Park, E. K., Ro, D. Y., Lee, J. M., Namkoong, S. E., & Ahn, W. S., 2004, Anti-Tumor Effects of Epigallocatechin-3-Gallate Extracted From Green Tea On Ovarian Cancer Cell Lines. Korean Journal of Obstetrics and Gynecology, 634-649.

[25]. Yasothkumar, D., Ramani, P., Jayaraman, S., Ramalingam, K. and Tilakaratne, W. M., 2024, Expression Profile of Circulating Exosomal microRNAs in Leukoplakia, Oral Submucous Fibrosis, and Combined Lesions of Leukoplakia and Oral Submucous Fibrosis. Head and Neck Pathology, 18(1), p.28.

[26]. Pianetti, S., Guo, S., Kavanagh, K. T., & Sonenshein, G. E., 2002, Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Research, 62(3), 652-655.

[27]. Przystupski, D., Michel, O., Rossowska, J., Kwiatkowski, S., Saczko, J., & Kulbacka, J., 2019, The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Medicinal Chemistry Research, 28, 657-667.

[28]. Sicard, A. A., Gonzalez Suarez, N., Cappadocia, L., & Annabi, B., 2021,Functional targeting of the TGF-βR1 kinase domain and downstream signaling: A role for the galloyl moiety of green tea-derived catechins in ES-2 ovarian clear cell carcinoma. The Journal of Nutritional Biochemistry, 87, 108518. https://doi.org/10.1016/j.jnutbio.2020.108518

[29]. Maity, R., Chatterjee, M., Banerjee, A., Das, A., Mishra, R., Mazumder, S., & Chanda, N., 2019, Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Materials Science and Engineering: C, 109909. https://doi.org/10.1016/j.msec.2019.109909

[30]. Zhang, M., Lee, A. H., Binns, C. W., & Xie, X., 2004, Green tea consumption enhances survival of epithelial ovarian cancer. International Journal of Cancer, 112(3), 465–469. https://doi.org/10.1002/ijc.20456

[31]. Pazhani, J., Chanthu, K., Jayaraman, S. and Varun, B. R., 2023, Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. Journal of Oral and Maxillofacial Pathology, 27(4), pp.649-654.

[32]. Panji, M., Behmard, V., Zare, Z., Malekpour, M., Nejadbiglari, H., Yavari, S., Nayerpoudizaj, T., Safaeian, A., Bakhshi, A., Abazari, O., Abbasi, M., Khanicheragh, P., & Shabanzadeh, M., 2021, Synergistic effects of green tea extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene, 787, 145638. 10.1016/j.gene.2021.145638.

[33]. Fathima, J. S., Jayaraman, S., Sekar, R. and Syed, N. H., 2024, The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology, pp.1-10.

[34]. Chen, H., Landen, C. N., Li, Y., Alvarez, R. D., & Tollefsbol, T. O., 2013, Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Experimental Cell Research, 319(5), 697–706. http://dx.doi.org/10.1016/j.yexcr.2012.12.026.

[35]. Lestari, M. L. A. D., & Indrayanto, G., 2015, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Curcumin. 10.1016/b978-0-12-800173-8.00003-9. doi: 10.1016/j.cellbi.2005.10.024

[36]. Shishodia, S., Chaturvedi, M. M., & Aggarwal, B. B., 2007, Role of curcumin in cancer therapy. Current Problems in Cancer, 31, 243-305. 10.1016/j.currproblcancer.2007.04.001

[37]. Sahin, K., Orhan, C., Tuzcu, M., Sahin, N., Tastan, H., Özercan, İ. H., Güler, O., Kahraman, N., Kucuk, O., & Ozpolat, B., 2017, Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prevention Research, PMID: 29089332. DOI: 10.1158/1940-6207.CAPR-16-0289

[38]. Murali, M. Yallapu, Diane M. Maher, Vasudha Sundram, Maria C. Bell, Meena Jaggi, & Subhash C. Chauhan, 2010, Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. Journal of Ovarian Research, 3, Article 11. 10.1186/1757-2215-3-11.

[39]. Sagar, S., Ramani, P., Moses, S., Gheena, S. and Selvaraj, J., 2024, Correlation of salivary cytokine IL-17A and 1, 25 dihydroxycholecalciferol in patients undergoing orthodontic treatment. Odontology, pp.1-10.

[40]. Wei, P., Hui, Y., Cong, C., Xiuzu, S., Brittany, W., Rebecca, K., Shan, L., Gang, H., Wen, D., & Yinsheng, W., 1994, AMPK mediates curcumin-induced cell death in CAOV3 ovarian cancer cells. Oncology Reports. 10.3892/or_00000179.

[41]. Seo, J., Kim, B., Dhanasekaran, D. N., Tsang, B. K., & Song, Y. S., 2016, Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Letters, 371(1), 30-37. 10.1016/j.canlet.2015.11.021.

[42]. Yuzhu, H., Mengni, R., Bilan, W., Yunzhu, L., Yongzhong, C., & Songping, Z., 2020, Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment. International Journal of Nanomedicine, 15, 9703-9715. 10.2147/IJN.S274083.

[43]. Muhanmode, Y., Yalikun, W., Meng Ke, M., Maitinuri, A., Amina, S., & Shen, G., 2022, Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting PI3K pathway. Human & Experimental Toxicology, 41, 9603271221095929. 10.1177/09603271221095929.

[44]. Mishra, L. C., Singh, B. B., & Dagenais, S., 2000, Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A review. Alternative Medicine Reviews, 5, 334-346.

[45]. Bhattacharya, S. K., Goel, R. K., Kaur, R., & Ghosal, S., 1987, Anti-stress activity of Sitoindosides VII and VIII. New Acylsterylglucosides from Withania somnifera. Phytotherapy Research, 1, 32-37.

[46]. Barua, A., Bradaric, M. J., Bitterman, P., Abramowicz, J. S., Sharma, S., Basu, S., Lopez, H., Bahr, J. M., 2013, Dietary Supplementation of Ashwagandha (Withania somnifera, Dunal) Enhances NK Cell Function in Ovarian Tumors in the Laying Hen Model of Spontaneous Ovarian Cancer. AJI, 10.1111/aji.12172.

[47]. Kakar, S. S., Ratajczak, M. Z., Powell, K. S., Moghadamfalahi, M., Miller, D. M., Batra, S. K., & Singh, S. K., 2014, Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells. PLOS ONE, 10.1371/journal.pone.0107596.

[48]. Neo, S. Y., Siew, Y. Y., Yew, H. C., He, Y., Poh, K. L., Tsai, Y. C., Ng, S. L., Tan, W. X., Chong, T. I., Lim, C. S. E. S., Ho, S. W., Singh, D., Ali, A., Linn, Y. C., Tan, C. H., Seow, S. V., & Koh, H. L., 2023, Effects of Leea indica leaf extracts and its phytoconstituents on natural killer cell-mediated cytotoxicity in human ovarian cancer. BMC Complementary Medicine and Therapies, 10.1186/s12906-023-03904-1.

[49]. Sairam, K., Priyambada, S., Aryya, N. C., & Goel, R. K., 2003, Gastroduodenal ulcer protective activity of Asparagus racemosus: an experimental, biochemical and histological study. Biological and Pharmaceutical Bulletin, PMID: 12686434, 10.1016/s0378-8741(02)00342-2.

[50]. Kalai Vani, S., Sivakumar, G., Geetha, R. V., & Vishnu Priya, V., 2019, Invitro cytotoxic activity of Asparagus racemosus on ovarian carcinoma cell lines (SKOV-3) by 3-(4, 5-dimethythiazol-2-yl) -2, 5-diphenyl tetrazolium bromide assay. Drug Invention Today, 12(6), 1162.

[51]. Zhang, X., Wang, J., Fan, Y., Zhao, Z., Paraghamian, S. E., Hawkins, G. M., Buckingham, L., O’Donnell, J., Hao, T., Suo, H., Yin, Y., Sun, W., Kong, W., Sun, D., Zhao, L., Zhou, C., & Bae Jump, V. L., 2023, Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel sensitive and resistant ovarian cancer cells. Journal of Cancer Research and Clinical Oncology, 149, 3871–3883.

[52]. Hemashekhar, M., Sunitha, K., Santhosh, M. S., Devaraja, S., Kemparaju, K., Vishwanath, B. S., Niranjana, S. R., & Girish, K. S., 2011, An overview on genus Garcinia: Phytochemical and therapeutical aspects. Phytochemistry Reviews, 10, 325-351. https://doi.org/10.1007/s11101-011-9207-3

[53]. Yang, R., Li, P., Li, N., Zhang, Q., Bai, X., Wang, L., Xiao, Y., Sun, L., Yang, Q., & Yan, J., 2017, Xanthones from the pericarp of Garcinia mangostana. Molecules, 22(5), 683. https://doi.org/10.3390/molecules22050683.

[54]. https://pubchem.ncbi.nlm.nih.gov/compound/10298511.

[55]. Xu, X. H., Liu, Q. Y., Li, T., Liu, J. L., Chen, X., Huang, L., Qiang, W. A., Chen, X., Wang, Y., Lin, L. G., & Lu, J. J., 2017, Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Scientific Reports, 7, 10718. https://doi.org/10.1038/s41598-017-11417-4

[56]. https://pubchem.ncbi.nlm.nih.gov/substance/134222836.

[57]. Setyawati, L. U., Nurhidayah, W., Khairul Ikram, N. K., Mohd Fuad, W. E., & Muchtaridi, M., 2023, General toxicity studies of alpha mangostin from Garcinia mangostana: A systematic review. Heliyon, 9(5):e16045. doi:10.1016/j.heliyon.2023.e16045.

[58]. Ittiudomrak, T., Puthong, S., Roytrakul, S., & Chanchao, C., 2019, α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells. Toxicological Research, 35(2), 167–179. doi:10.5487/TR.2019.35.2.167.

[59]. Yu, Y., Fei, Z., & Qin, L., 2020, Anticancer effects of α-mangostin in OVACAR-3 human ovarian carcinoma cells are mediated via involvement of reactive oxygen species, mitochondrial –mediated apoptosis, suppression of cell migration and invasion and m-TOR/PI3K/AKT signaling pathway. JBUON, 25(5), 2294.

[60]. Zhang, Z.-R., Leung, W. N., Cheung, H. Y., & Chan, C. W., 2015, Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. Evidence-Based Complementary and Alternative Medicine, 2015, 1–10. doi:10.1155/2015/919616.

[61]. Jiang, G., Liu, J., Ren, B., Tang, Y., Owusu, L., Li, M., Zhang, J., Liu, L., & Li, W., 2016, Anti-tumor effects of osthole on ovarian cancer cells in vitro. Journal of Ethnopharmacology, 193, 368–376. doi:10.1016/j.jep.2016.08.045.

[62]. Liang, J., Zhou, J., Xu, Y., Huang, X., Wang, X., Huang, W., & Li, H., 2020, Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. European Journal of Pharmacology, 874, 172990. doi:10.1016/j.ejphar.2020.172990.