Determining the Dual Effect of Mirabegron on Anticancer Mechanism and Brown Adipose Tissue Activation - An in-silico Approach

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.06.Art014

Authors : Priya V, Keerthivasan S, Kaviyarasi R

Abstract:

Mirabegron, a β3-adrenoceptor agonist first developed for treating overactive bladder, has shown unexpected impacts on cancer and metabolic processes. Initially targeting the bladder's detrusor muscle, new research has revealed its potential in cancer therapy and brown adipose tissue (BAT) activation. This work employs silico approaches to evaluate how Mirabegron impacts critical cellular pathways such as AMPK, mTOR, and UCP, which are important for cancer and metabolic regulation. Docking studies show that Mirabegron binds effectively to several targets, with high affinities indicating a meaningful interaction. Specifically, it binds to AMPK at -7.0 kcal/mol, mTOR at -5.4 kcal/mol, and UCP at -7.4 kcal/mol. These interactions contain key residues, indicating that Mirabegron's influence extends beyond its original usage, potentially affecting cancer progression and metabolism.

References:

[1].   Bhide, A.A., Digesu, G.A., Fernando, R. and Khullar, V., 2012. Mirabegron–a selective β3-adrenoreceptor agonist for the treatment of overactive bladder. Research and Reports in Urology, 4, p.41.https://doi.org/10.2147%2FRRU.S28930

[2].   Sun, K., Wang, D., Wu, G., Ma, J., Wang, T., Wu, J. and Wang, J., 2021. Mirabegron improves the irritative symptoms caused by BCG immunotherapy after transurethral resection of bladder tumors. Cancer medicine, 10(21), pp.7534-7541.https://doi.org/10.1002/cam4.4278

[3].   Bel, J.S., Tai, T.C., Khaper, N. and Lees, S.J., 2021. Mirabegron: The most promising adipose tissue beiging agent. Physiological Reports, 9(5), p.e14779. https://doi.org/10.14814/phy2.14779

[4].   Kamal, M.M., El-Abhar, H.S., Abdallah, D.M., Ahmed, K.A., Aly, N.E.S. and Rabie, M.A., 2024. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. International Immunopharmacology, 126, p.111289.https://doi.org/10.1016/j.intimp.2023.111289

[5].   Chapple, C.R., Dvorak, V., Radziszewski, P., Van Kerrebroeck, P., Wyndaele, J.J., Bosman, B., Boerrigter, P., Drogendijk, T., Ridder, A., Van Der Putten-Slob, I. and Yamaguchi, O., 2013. A phase II dose-ranging study of mirabegron in patients with overactive bladder. International Urogynecology Journal, 24, pp.1447-1458.https://doi.org/10.1007/s00192-013-2042-x

[6].   Bragg, R., Hebel, D., Vouri, S.M. and Pitlick, J.M., 2014. Mirabegron: a beta-3 agonist for overactive bladder. The Consultant Pharmacist®, 29(12), pp.823-837. DOI: https://doi.org/10.4140/TCP.n.2014.823

[7].   Jayaraman, S., Natararaj, S. and Veeraraghavan, V.P., 2024. Hesperidin Inhibits Oral Cancer Cell Growth via Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In Vitro and In Silico Analyses. Cureus16(2). https://doi.org/10.7759/cureus.53458

[8].   Sacco, E. and Bientinesi, R., 2012. Mirabegron: a review of recent data and its prospects in the management of overactive bladder. Therapeutic advances in Urology, 4(6), pp.315- 324.https://doi.org/10.1177/1756287212457114

[9].   Sun, X., Sui, W., Mu, Z., Xie, S., Deng, J., Li, S., Seki, T., Wu, J., Jing, X., He, X. and Wang, Y., 2023. Mirabegron displays anticancer effects by globally browning adipose tissues. Nature Communications, 14(1), p.7610. https://doi.org/10.1038/s41467-023-43350-8.

[10].  Veeraraghavan, V.P., Jayaraman, S., Rengasamy, G., Mony, U., Ganapathy, D.M., Geetha, R.V. and Sekar, D., 2021. Deciphering the role of microRNAs in neuroblastoma. Molecules, 27(1), p.99. https://doi.org/10.3390/molecules27010099

[11].  Calvani, M., Subbiani, A., Vignoli, M. and Favre, C., 2019. Spotlight on ROS andβ3 Adrenoreceptors fighting in cancer cells. Oxidative Medicine and Cellular Longevity, 2019(1), p.6346529. https://doi.org/10.1155/2019/6346529.

[12].  Kajimura, S., Seale, P., Kubota, K., Lunsford, E., Frangioni, J.V., Gygi, S.P. and Spiegelman, B.M., 2009. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 460(7259), pp.1154-1158.https://doi.org/10.1038/nature08262

[13].  Zhang, D., Sun, F., Yao, H., Bao, X., Wang, D., Cui, Y. and Wu, J., 2021. The efficacy and safety of mirabegron for the treatment of neurogenic lower urinary tract dysfunction: a systematic review and meta-analysis. Frontiers in Pharmacology, 12, p.756582. https://doi.org/10.3389/fphar.2021.756582

[14].  Steinberg, J.D., Vogel, W. and Vegt, E., 2017. Factors influencing brown fat activation in FDG PET/CT: a retrospective analysis of 15,000+ cases. The British Journal of Radiology, 90(1075), p.20170093. https://doi.org/10.1259/bjr.20170093.

[15].  Nedergaard, J. and Cannon, B., 2010. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell metabolism, 11(4), pp.268- 272. DOI: https://doi.org/10.1016/j.cmet.2010.03.007

[16].  Cannon, B. and Nedergaard, J.A.N., 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews. https://doi.org/10.1152/physrev.00015.2003

[17].  Dawood O, El-Zawahry A. Mirabegron. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

[18].  Sui, W., Li, H., Yang, Y., Jing, X., Xue, F., Cheng, J., Dong, M., Zhang, M., Pan, H., Chen, Y. and Zhang, Y., 2019. Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. Proceedings of the National Academy of Sciences, 116(22), pp.10937- 10942. https://doi.org/10.1073/pnas.1901655116.

[19].  Hardie, D.G., 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews Molecular Cell Biology, 8(10), pp.774-785. https://doi.org/10.1038/nrm2249

[20].  Laplante, M. and Sabatini, D.M., 2012. mTOR signaling in growth control and disease. cell, 149(2), pp.274-293. DOI: https://doi.org/10.1016/j.cell.2012.03.017

[21].  Chaudhary, R., Gupta, S. and Chauhan, S., 2023. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 23(4), pp.494- 502. DOI: https://doi.org/10.2174/1871530322666220902143401

[22].  Ikeda, K., Kang, Q., Yoneshiro, T., Camporez, J.P., Maki, H., Homma, M., Shinoda, K., Chen, Y., Lu, X., Maretich, P. and Tajima, K., 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine, 23(12), pp.1454-1465.https://doi.org/10.1038/nm.4429

[23].  Kannan, B. and Arumugam, P., 2023. The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases. Journal of Indian Society of Periodontology27(2), pp.126-130. doi: 10.4103/jisp.jisp_678_21.

[24].  Rieshy, V., Chokkattu, J.J., Rajeshkumar, S. and Neeharika, S., 2023. Mechanism of action of clove and ginger herbal formulation-mediated TiO2 nanoparticles against lactobacillus species: an in vitro study. Journal of Advanced Oral Research14(1), pp.61-66. https://doi.org/10.1177/23202068221142

[25].  Manivannan, H.P., Veeraraghavan, V.P. and Francis, A.P., 2024. Identification of Novel Marine Bioactive Compound as Potential Multiple Inhibitors in Triple-negative Breast Cancer-An in silico Approach. Current Computer-aided Drug Design. https://doi.org/10.2174/0115734099287118240102112337.

[26].  Hao, L., Scott, S., Abbasi, M., Zu, Y., Khan, M.S.H., Yang, Y., Wu, D., Zhao, L. and Wang, S., 2019. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. Journal of Pharmacology and Experimental Therapeutics, 369(3), pp.419-427. Doi: https://doi.org/10.1124/jpet.118.255778

[27].  Thomas, P., Selvakumar, S.C., Preethi, K.A., Ramasubramanian, A., Ramani, P. and Sekar, D., 2023. miRNA-20a: A Dual Regulator of Cell Migration and Apoptosis in Oral Squamous Cell Carcinoma:–An In Vitro Study. Journal of Orofacial Sciences, 15(2), pp.167-174. https://ouci.dntb.gov.ua/en/works/4VOQ3DZl/

[28].  Thomas, P., Preethi, K.A., Selvakumar, S.C., Ramani, P. and Sekar, D., 2023. Relevance of micro-RNAs and their targets as a diagnostic and prognostic marker in oral squamous cell carcinoma. Journal of Oral and Maxillofacial Pathology, 27(2), pp.364-373. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581285/

[29].  Zhao, L., Luo, H., Li, T., Zhao, X. and Liu, Y., 2022. β3 adrenoceptor agonist mirabegron protects against right ventricular remodeling and drives Drp1 inhibition. Cardiovascular Diagnosis and Therapy, 12(6), p.815. Doi: 10.21037/cdt-22-274

[30].  Dąbrowska, A.M. and Dudka, J., 2023. Mirabegron, a selective β3-adrenergic receptor agonist, as a potential anti-obesity drug. Journal of Clinical Medicine, 12(21), p.6897. https://doi.org/10.3390/jcm12216897

[31].  Anees, F.F., Preethi, K.A., Selvakumar, S.C., Murthykumar, K., Ganapathy, D. and Sekar, D., 2023. Prospective study: expression levels of microRNA-7-3p and its target STAT3 in head and neck cancer. Minerva Dental and Oral Science. https://pubmed.ncbi.nlm.nih.gov/37326506/.

[32].  Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants29(2).

[33].   Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research30(6), pp.877-880.

[34].  Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal16(5), pp.310-317.