Development and Characterization of a Magnesium Membrane Loaded with Hyaluronic Acid, Tricalcium Phosphate, and Quercetin for Bone Healing Applications

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.06.Art013

Authors : Gayathri Rengasamy, Hema Shree K, Supreeta MS

Abstract:

This study aims to develop and characterize a hyaluronic acid/Tricalcium Phosphate (TCP)/quercetin-doped magnesium membrane for Guided Bone Regeneration (GBR), targeting applications in periodontal and other biomedical fields. The goal is to create a biocompatible, hydrophilic membrane with enhanced properties suitable for promoting bone regeneration. A polymeric solution containing TCP, PVA, hyaluronic acid, and quercetin-doped magnesium nanoparticles was electrospun to create nanofibrous membranes. These membranes were analyzed using FTIR for chemical interactions, XRD for nanoparticle distribution, SEM for morphology, and water contact angle measurements for hydrophilicity. Cell viability was assessed with an MTT assay using Dental Pulp Stem Cells, and bone formation potential was evaluated using MG63 and osteoclast cells with Alizarin Red staining. The fabricated membranes demonstrated significant hydrophilicity, which is critical for GBR applications. SEM analysis revealed a nanofibrous structure with appropriate pore size, facilitating cell attachment and growth. The FTIR confirmed the expected chemical bonding, while XRD verified the incorporation of magnesium-doped nanoparticles. MTT assays showed high cell viability, indicating good biocompatibility. Furthermore, the bone formation assay confirmed the membrane’s potential to support osteogenesis. These findings suggest that the hyaluronic acid/TCP/quercetin-doped magnesium membranes developed in this study exhibit favorable properties for use in guided bone regeneration, offering promising potential for addressing the limitations of current periodontal treatments and improving patient outcomes.

References:

[1].   Nazir MA., 2017, Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). Apr-Jun;11(2):72-80. PMID: 28539867; PMCID: PMC5426403.

[2].   Gasner NS, Schure RS. Periodontal disease. InStatPearls [Internet] 2023 Apr 10. StatPearls Publishing.

[3].   Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, 2023, Isola G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics. Apr 21;15(4):1312. Doi: 10.3390/pharmaceutics15041312. PMID: 37111796; PMCID: PMC10143241.

[4].   Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M., 2022, Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci. Nov 29;23(23):14987. Doi: 10.3390/ijms232314987. PMID: 36499315; PMCID: PMC9735671.

[5].   Dave PH, Vishnupriya V, Gayathri R., 2016, Herbal remedies for anxiety and depression-A review. J Adv Pharm Technol Res 9:1253

[6].   Balaji V, Priya VV, Gayathri R., 2017, Awareness of risk factors for obesity among College students in Tamil Nadu: A Questionnaire based study. J Adv Pharm Technol Res 10:1367

[7].   Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB., 2020, Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials (Basel). Aug 22;10(9):1649. Doi: 10.3390/nano10091649. PMID: 32842562; PMCID: PMC7557593.

[8].   Prakoso AT, Basri H, Adanta D, Yani I, Ammarullah MI, Akbar I, Ghazali FA, Syahrom A, Kamarul T., 2023, The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines. Feb 1;11(2):427. Doi: 10.3390/biomedicines11020427. PMID: 36830961; PMCID: PMC9953537.

[9].   Gayathri R, Anuradha V Phytochemical screening and total phenolic content of aqueous and acetone extracts of seed, butter, mace of nutmeg (Myristica fragrans Houtt). Int. J. Pharm. Sci. Rev. Res.

[10].  Jerusha SP, Gayathri R, Vishnupriya V., 2016, Preliminary phytochemical analysis and cytotoxicity potential of Bacopa monnieri on oral cancer cell lines. Int J Pharm Sci Rev Res 39:48

[11].  Tirupathi S, Afnan L., 2024, Dental Pulp Derived Stem Cells for Facial Nerve Regeneration and Functional Repair: A Systematic Review of Animal Studies. Current Oral Health Reports 11:198214.

[12].  Humaira, Raza Bukhari SA, Shakir HA, Khan M, Saeed S, Ahmad I, Muzammil K, Franco M, Irfan M, Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front Chem. 2022 Dec 23;10:1092123. Doi: 10.3389/fchem.2022.1092123. PMID: 36618861; PMCID: PMC9816904.

[13].  Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C., 2023, Technological advances in fibrin for tissue engineering. J Tissue Eng., Aug 14;14:20417314231190288. Doi: 10.1177/20417314231190288. PMID: 37588339; PMCID: PMC10426312.

[14].  Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH., 2023, Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res. Mar 28;10(1):16. Doi: 10.1186/s40779-023-00448-w. PMID: 36978167; PMCID: PMC10047482.

[15].  Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y., 2023, Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol. Aug 15;246:125672. Doi: 10.1016/j.ijbiomac.2023.125672. Epub 2023 Jul 3. PMID: 37406920.

[16].  Zhang X, Reagan MR, Kaplan DL., 2009, Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. Oct 5;61(12):988-1006. Doi: 10.1016/j.addr.2009.07.005. Epub 2009 Jul 28. PMID: 19643154; PMCID: PMC2774469.

[17].  Kumar JK, Surendranath P, Eswaramoorthy R., 2023, Regeneration of immature incisor using platelet rich fibrin: report of a novel clinical application. BMC Oral Health 23:69

[18].  Kishen A, Cecil A, Chitra S., 2023, Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent J 35:678683

[19].  Ramamurthy J, Bajpai D., 2024, Role of alginate-based scaffolds for periodontal regeneration of intrabony defects: A systematic review. World J Dent 15:181187

[20].  Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.

[21].  Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H., 2021, Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. Jul; 174:504-534. Doi: 10.1016/j.addr.2021.05.007. Epub 2021 May 13. PMID: 33991588.

[22].  Şeker Ş, Elçin AE, Elçin YM., 2023, Advances in Regenerative Medicine and Biomaterials. Methods Mol Biol.; 2575:127-152. Doi: 10.1007/978-1-0716-2716-7_7. PMID: 36301474.

[23].  Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants29(2).

[24].  Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research30(6), pp.877-880.

[25].  Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal16(5), pp.310-317.