Microbial Biofilm Inhibition in Dental White Spot Lesions using Crustin Derived Antimicrobial Peptide Crustin (CAMP) and Bio-assisted Sida Acuta Mediated Titanium Nanoparticles (SA_NP)

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.06.Art009

Authors : Shantha K Sundari, Havisha Nookala, Sivakamavalli Jeyachandran

Abstract:

White spot lesions (WSL), most commonly associated with Streptococcus mutans and Lactobacillus acidophilus are the routinely encountered, drawback in patients undergoing fixed orthodontic therapy due to poor oral hygiene, plaque and biofilm adhesion and retention. Many approaches have been reported against WSL lesions, amid a surge in reports on their antimicrobial resistance. In the present study, we aimed to evaluate two such novel formulations, cysteine-rich crusting antimicrobial peptide (CAMP) and plant-derived nanoparticles (SA_NPs) for the inhibitory activity of dental microbes. CAMP and SA_NP were isolated and characterized, according to the protocol adopted from our previous work. Followingly, the antimicrobial activity was assessed by a well diffusion method and minimum inhibitory concentration (MIC). In situ light microscopy analysis was used to evaluate their respective biofilm inhibition concentration (BIC). The results indicated a dose-dependent relation of CAMP and SA_NP. MIC of CAMP against S. mutans at 75 µg/ml was 17±0.4 mm and against L. acidophilus was 18±0.1mm, where MIC = 75 µg/ml for SA_NP, where in 17±0.1 mm zone of inhibition against S. mutans and 17±0.3 mm against L. acidophilus was noted. Maximum arrest/inhibition of biofilm growth for both S. mutans and L. acidophilus was observed at BIC= 75 μg for both CAMP and SA_NP. Therefore, newer approaches like the incorporation of green synthesized nanoparticles and curated peptide antimicrobials offer a new approach to treating microbial pathogens that are resistant to current treatment practices and for the treatment of pathogenic biofilms.

References:

[1].   Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent;5(6):433-9.

[2].   Bishara, S.E., Ostby, A.W., 2008, White Spot lesions: Formation, prevention, and treatment. Semin Orthod.;14(3):174–82.

[3].   Julien, K.C., Buschang, P.H., Campbell, P.M., 2013, Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod.;83(4):641–7.

[4].   Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent.;5(6):433–9.

[5].   Gorelick, L., Geiger, A. M., Gwinnett, A.J., 1982, Incidence of white spot formation after bonding and banding. Am J Orthod.; 81(2):93–8.

[6].   Khoroushi, M., Kachuie, M., 2017 Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent.;8(1):11–9.

[7].   Gokce, G., Savas, S., Kucukyilmaz, E., Veli, I., 2017, Effects of toothpastes on white spot lesions around orthodontic brackets using quantitative light-induced fluorescence (QLF): An in vitro study. J Orofac Orthop.; 78(6):480–6.

[8].   Sonesson, M., Brechter, A., Lindman, R., Abdulraheem, S., Twetman, S., 2021, Fluoride varnish for white spot lesion prevention during orthodontic treatment: results of a randomized controlled trial 1 year after debonding. Eur J Orthod.; 43(4):473–7.

[9].   Gizani, S., Petsi, G., Twetman, S., Caroni, C., Makou, M., Papagianoulis, L., 2016, Effect of the probiotic bacterium Lactobacillus reuteri on white spot lesion development in orthodontic patients. Eur J Orthod.; 38(1):85–9.

[10].  Restrepo, M., Bussaneli, D.G., Jeremias, F., Cordeiro, R.C.L., Raveli, DB, Magalhães, A.C., et al., 2016, Control of White Spot Lesions with Use of Fluoride Varnish or Chlorhexidine Gel During Orthodontic Treatment- A Randomized Clinical Trial. J Clin Pediatr Dent.; 40(4):274–80.

[11].  Sivakamavalli, J., Nirosha, R., Vaseeharan, B., 2015, Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and Its Antibiofilm Activity. Appl Biochem Biotechnol.; 176(4):1084–101.

[12].  Yassaei, S., Nasr, A., Zandi, H., Motallaei, M.N., 2020, Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times. Dental Press J Orthod.; 25(2):52–60.

[13].  Espinosa-Cristóbal, L.F., López-Ruiz, N., Cabada-Tarín, D., Reyes-López, S.Y., Zaragoza-Contreras, A., Constandse-Cortéz, D., Donohué-Cornejo, A., et al., 2018, Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. Journal of Nanomaterials., (1):9248527.

[14].  Ali, A., Ismail, H., Amin, K., 2022, Effect of nanosilver mouthwash on prevention of white spot lesions in patients undergoing fixed orthodontic treatment - a randomized double-blind clinical trial. J Dent Sci.; 17(1):249–55.

[15].  Tanner, A.C.R., Sonis, A.L., Holgerson, P., Starr, J.R., Nunez, Y., Kressirer, C.A., et al., 2012, White-spot lesions and gingivitis microbiotas in orthodontic patients. J Dent Res.; 91(9):853–8.

[16].  Donkor, A.M., Ahenkorah, B., Wallah, T.A., Yakubu, A., 2023, Evaluation of extracts from and their herbal ointment for therapeutic and biological activities. Heliyon; 9(9):e19316.

[17].  Membe-Femoe, U., Kadji Fassi, J.B., Jatsa, H., Tchoffo, Y.L., Nna, D.C., Kamdoum, B.C., et al., 2022, Assessment of the Cercaricidal Activity of Burm. F. and Linn. (Malvaceae) Hydroethanolic Extracts, Cytotoxicity, and Phytochemical Studies. Evid Based Complement Alternat Med.; (1):7281144.

[18].  Veerakumar, K., Govindarajan, M., Rajeswary, M., 2013, Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res.; 112(12):4073–85.

[19].  Jablonski-Momeni, A., Korbmacher-Steiner, H., Heinzel-Gutenbrunner, M., Jablonski, B., Jaquet, W., Bottenberg, P., 2019, Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep.; 9(1):269.

[20].  Justino, A.B., Teixeira, R.R., Peixoto, L.G., Jaramillo, O.L.B., Espindola, F.S., 2017, Effect of saliva collection methods and oral hygiene on salivary biomarkers. Scand J Clin Lab Invest.;77(6):415–22.

[21].  Zachrisson, B.U., Brobakken, B.O., 1978, Clinical comparison of direct versus indirect bonding with different bracket types and adhesives. Am J Orthod.; 74(1):62–78.

[22].  Manoharan, V., Kumar, S., Arumugam, S.B., Anand, V., Krishnamoorthy, S., Methippara, J.J., 2019, Is Resin Infiltration a Microinvasive Approach to White Lesions of Calcified Tooth Structures: A Systemic Review. Int J Clin Pediatr Dent.; 12(1):53–8.

[23].  Cai, Y., Liao, Y., Brandt, B.W., Wei, X., Liu, H., Crielaard, W., et al., 2017, The Fitness Cost of Fluoride Resistance for Different Strains in Biofilms. Front Microbiol.; 8:1630.

[24].  Moraes, G., Zambom, C., Siqueira, W.L., 2021, Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals; 14(8).

[25].  Kulshrestha, S., Khan, S., Hasan, S., Khan, M.E., Misba, L., Khan, A.U., 2016, Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol.; 100(4):1901–14.

[26].  Nguyen, S., Escudero, C., Sediqi, N., Smistad, G., Hiorth, M., 2017, Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci; 104:326–34.

[27].  Ibrahim, M.A., Priyadarshini, B., Neo, J., Fawzy, A.S.,2017, Characterization of Chitosan/TiO Nano-Powder Modified Glass-Ionomer Cement for Restorative Dental Applications. J Esthet Restor Dent.; 29(2):146–56.

[28].  Covarrubias, C., Trepiana, D., Corral, C., 2018, Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent Mater J.; 37(3):379–84.

[29].  Sebelemetja, M., Moeno, S., Patel, M., 2020, Anti-acidogenic, anti-biofilm and slow-release properties of Dodonaea viscosa var. angustifolia flavone stabilized polymeric nanoparticles. Arch Oral Biol.; 109:104586.

[30].  Liu, Y., Busscher, H.J., Zhao, B., Li, Y., Zhang, Z., van der Mei, H.C., et al., 2016, Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. ACS Nano.; 10(4):4779–89.

[31].  Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P., 2018, “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology; 16(1):84.

[32].  Abolarinwa, T.O., Ajose, D.J., Oluwarinde, B.O., Fri, J., Montso, K.P., Fayemi, O.E., et al., 2022, Plant-derived nanoparticles as alternative therapy against Diarrheal pathogens in the era of antimicrobial resistance: A review. Front Microbiol.; 13:1007115.

[33].  Saravanan, A., Maruthapandi, M., Das, P., Luong, JHT., Gedanken, A., 2021, Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomaterials (Basel);11(2).

[34].  Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., et al., 2018, Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ.; (6)5186.

[35].  Großkopf, A., Simm, A., 2020, Carbohydrates in nutrition: friend or foe? Z Gerontol Geriatr.; 53(4):290–4.

[36].  Selvaraju, N., Ganesh, P.S., Palrasu, V., Venugopal, G., Mariappan, V., 2022, Evaluation of Antimicrobial and Antibiofilm Activity of Fruit Juice Based Carbon Dots against. ACS Omega.; 7(41):36227–34.

[37].  Somboonwiwat, K., Marcos, M., Tassanakajon, A., Klinbunga, S., Aumelas, A., Romestand, B., et al., 2005, Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 29(10):841–51.

[38].  Liu, F., Liu, Y., Li, F., Dong, B., Xiang, J., 2005, Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Mar Biotechnol.; 7(6):600–8.

[39].  Kang, C.J., Wang, J.X., Zhao, X.F., Yang, X.M., Shao, H.L., Xiang, J.H., 2004, Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.; 16(4):513–25.

[40].  Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono, I., Aoki, T., et al., 2002, Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar Biotechnol.; 4(5):487–94.

[41].  Supungul, P., Tang, S., Maneeruttanarungroj, C., Rimphanitchayakit, V., Hirono, I., Aoki, T., et al., 2008, Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 32(1):61–70.

[42].  Yang, S., Huang, H., Wang, F., Aweya, J.J., Zheng, Z., Zhang, Y., 2018, Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids.; 50(8):995–1005.

[43].  Wang, Z., de la Fuente-Núñez, C., Shen, Y., Haapasalo, M., Hancock, R.E.W., 2015, Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide. PLoS One.; 10(7)-0132512.

[44].  Zhang, W., Xu, X., Zhang, J., Ye, T., Zhou, Q., Xu, Y., Li, W., Hu, Z., et al., 2022, Discovery and characterization of a New Crustin antimicrobial peptide from amphibalanus amphitrite. Pharmaceutics.; 14(2):413.

[45].  Zhang, J., Li, F., Wang, Z., Xiang, J., 2007, Cloning and recombinant expression of a crustin-like gene from Chinese shrimp, Fenneropenaeus chinensis. J Biotechnol.; 127(4):605–14.

[46].  Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants29(2).

[47].  Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research30(6), pp.877-880.

[48].  Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal16(5), pp.310-317.