Microbial Biofilm Inhibition in Dental White Spot Lesions using Crustin Derived Antimicrobial Peptide Crustin (CAMP) and Bio-assisted Sida Acuta Mediated Titanium Nanoparticles (SA_NP)
Abstract:
White spot lesions (WSL), most commonly
associated with Streptococcus mutans and Lactobacillus acidophilus are the
routinely encountered, drawback in patients undergoing fixed orthodontic
therapy due to poor oral hygiene, plaque and biofilm adhesion and retention.
Many approaches have been reported against WSL lesions, amid a surge in reports
on their antimicrobial resistance. In the present study, we aimed to evaluate
two such novel formulations, cysteine-rich crusting antimicrobial peptide
(CAMP) and plant-derived nanoparticles (SA_NPs) for the inhibitory activity of
dental microbes. CAMP and SA_NP were isolated and characterized, according to
the protocol adopted from our previous work. Followingly, the antimicrobial
activity was assessed by a well diffusion method and minimum inhibitory
concentration (MIC). In situ light microscopy analysis was used to evaluate
their respective biofilm inhibition concentration (BIC). The results indicated
a dose-dependent relation of CAMP and SA_NP. MIC of CAMP against S. mutans at
75 µg/ml was 17±0.4 mm and against L. acidophilus was 18±0.1mm, where MIC = 75
µg/ml for SA_NP, where in 17±0.1 mm zone of inhibition against S. mutans and
17±0.3 mm against L. acidophilus was noted. Maximum arrest/inhibition of
biofilm growth for both S. mutans and L. acidophilus was observed at BIC= 75 μg
for both CAMP and SA_NP. Therefore, newer approaches like the incorporation
of green synthesized nanoparticles and curated peptide antimicrobials offer a
new approach to treating microbial pathogens that are resistant to current
treatment practices and for the treatment of pathogenic biofilms.
References:
[1]. Sundararaj, D., Venkatachalapathy, S., Tandon,
A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white
spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J
Int Soc Prev Community Dent;5(6):433-9.
[2]. Bishara, S.E., Ostby, A.W., 2008, White Spot
lesions: Formation, prevention, and treatment. Semin Orthod.;14(3):174–82.
[3]. Julien, K.C., Buschang, P.H., Campbell, P.M.,
2013, Prevalence of white spot lesion formation during orthodontic treatment.
Angle Orthod.;83(4):641–7.
[4]. Sundararaj, D., Venkatachalapathy, S., Tandon,
A., Pereira, A., 2015, Critical evaluation of incidence and prevalence of white
spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J
Int Soc Prev Community Dent.;5(6):433–9.
[5]. Gorelick, L., Geiger, A. M., Gwinnett, A.J.,
1982, Incidence of white spot formation after bonding and banding. Am J
Orthod.; 81(2):93–8.
[6]. Khoroushi, M., Kachuie, M., 2017 Prevention and
Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin
Dent.;8(1):11–9.
[7]. Gokce, G., Savas, S., Kucukyilmaz, E., Veli, I.,
2017, Effects of toothpastes on white spot lesions around orthodontic brackets
using quantitative light-induced fluorescence (QLF): An in vitro study. J
Orofac Orthop.; 78(6):480–6.
[8]. Sonesson, M., Brechter, A., Lindman, R.,
Abdulraheem, S., Twetman, S., 2021, Fluoride varnish for white spot lesion
prevention during orthodontic treatment: results of a randomized controlled
trial 1 year after debonding. Eur J Orthod.; 43(4):473–7.
[9]. Gizani, S., Petsi, G., Twetman, S., Caroni, C.,
Makou, M., Papagianoulis, L., 2016, Effect of the probiotic bacterium
Lactobacillus reuteri on white spot lesion development in orthodontic patients.
Eur J Orthod.; 38(1):85–9.
[10]. Restrepo, M., Bussaneli, D.G., Jeremias, F.,
Cordeiro, R.C.L., Raveli, DB, Magalhães, A.C., et al., 2016, Control of White
Spot Lesions with Use of Fluoride Varnish or Chlorhexidine Gel During
Orthodontic Treatment- A Randomized Clinical Trial. J Clin Pediatr Dent.; 40(4):274–80.
[11]. Sivakamavalli, J., Nirosha, R., Vaseeharan, B.,
2015, Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial
Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and
Its Antibiofilm Activity. Appl Biochem Biotechnol.; 176(4):1084–101.
[12]. Yassaei, S., Nasr, A., Zandi, H., Motallaei,
M.N., 2020, Comparison of antibacterial effects of orthodontic composites
containing different nanoparticles on Streptococcus mutans at different times.
Dental Press J Orthod.; 25(2):52–60.
[13]. Espinosa-Cristóbal, L.F., López-Ruiz, N.,
Cabada-Tarín, D., Reyes-López, S.Y., Zaragoza-Contreras, A., Constandse-Cortéz,
D., Donohué-Cornejo, A., et al., 2018, Antiadherence and antimicrobial
properties of silver nanoparticles against Streptococcus mutans on brackets and
wires used for orthodontic treatments. Journal of Nanomaterials., (1):9248527.
[14]. Ali, A., Ismail, H., Amin, K., 2022, Effect of
nanosilver mouthwash on prevention of white spot lesions in patients undergoing
fixed orthodontic treatment - a randomized double-blind clinical trial. J Dent
Sci.; 17(1):249–55.
[15]. Tanner, A.C.R., Sonis, A.L., Holgerson, P.,
Starr, J.R., Nunez, Y., Kressirer, C.A., et al., 2012, White-spot lesions and
gingivitis microbiotas in orthodontic patients. J Dent Res.; 91(9):853–8.
[16]. Donkor, A.M., Ahenkorah, B., Wallah, T.A.,
Yakubu, A., 2023, Evaluation of extracts from and their herbal ointment for
therapeutic and biological activities. Heliyon; 9(9):e19316.
[17]. Membe-Femoe, U., Kadji Fassi, J.B., Jatsa, H.,
Tchoffo, Y.L., Nna, D.C., Kamdoum, B.C., et al., 2022, Assessment of the
Cercaricidal Activity of Burm. F. and Linn. (Malvaceae) Hydroethanolic
Extracts, Cytotoxicity, and Phytochemical Studies. Evid Based Complement
Alternat Med.; (1):7281144.
[18]. Veerakumar, K., Govindarajan, M., Rajeswary, M.,
2013, Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf
extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti
(Diptera: Culicidae). Parasitol Res.; 112(12):4073–85.
[19]. Jablonski-Momeni, A., Korbmacher-Steiner, H.,
Heinzel-Gutenbrunner, M., Jablonski, B., Jaquet, W., Bottenberg, P., 2019,
Randomised in situ clinical trial investigating self-assembling peptide matrix
P11-4 in the prevention of artificial caries lesions. Sci Rep.; 9(1):269.
[20]. Justino, A.B., Teixeira, R.R., Peixoto, L.G.,
Jaramillo, O.L.B., Espindola, F.S., 2017, Effect of saliva collection methods
and oral hygiene on salivary biomarkers. Scand J Clin Lab Invest.;77(6):415–22.
[21]. Zachrisson, B.U., Brobakken, B.O., 1978,
Clinical comparison of direct versus indirect bonding with different bracket
types and adhesives. Am J Orthod.; 74(1):62–78.
[22]. Manoharan, V., Kumar, S., Arumugam, S.B., Anand,
V., Krishnamoorthy, S., Methippara, J.J., 2019, Is Resin Infiltration a
Microinvasive Approach to White Lesions of Calcified Tooth Structures: A
Systemic Review. Int J Clin Pediatr Dent.; 12(1):53–8.
[23]. Cai, Y., Liao, Y., Brandt, B.W., Wei, X., Liu,
H., Crielaard, W., et al., 2017, The Fitness Cost of Fluoride Resistance for
Different Strains in Biofilms. Front Microbiol.; 8:1630.
[24]. Moraes, G., Zambom, C., Siqueira, W.L., 2021,
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals; 14(8).
[25]. Kulshrestha, S., Khan, S., Hasan, S., Khan,
M.E., Misba, L., Khan, A.U., 2016, Calcium fluoride nanoparticles induced
suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.
Appl Microbiol Biotechnol.; 100(4):1901–14.
[26]. Nguyen, S., Escudero, C., Sediqi, N., Smistad,
G., Hiorth, M., 2017, Fluoride loaded polymeric nanoparticles for dental
delivery. Eur J Pharm Sci; 104:326–34.
[27]. Ibrahim, M.A., Priyadarshini, B., Neo, J.,
Fawzy, A.S.,2017, Characterization of Chitosan/TiO Nano-Powder Modified
Glass-Ionomer Cement for Restorative Dental Applications. J Esthet Restor
Dent.; 29(2):146–56.
[28]. Covarrubias, C., Trepiana, D., Corral, C., 2018,
Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity
against cariogenic Streptococcus mutans. Dent Mater J.; 37(3):379–84.
[29]. Sebelemetja, M., Moeno, S., Patel, M., 2020,
Anti-acidogenic, anti-biofilm and slow-release properties of Dodonaea viscosa
var. angustifolia flavone stabilized polymeric nanoparticles. Arch Oral
Biol.; 109:104586.
[30]. Liu, Y., Busscher, H.J., Zhao, B., Li, Y.,
Zhang, Z., van der Mei, H.C., et al., 2016, Surface-Adaptive, Antimicrobially
Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency
in Staphylococcal Biofilms. ACS Nano.; 10(4):4779–89.
[31]. Singh, J., Dutta, T., Kim, K.H., Rawat, M.,
Samddar, P., Kumar, P., 2018, “Green” synthesis of metals and their oxide
nanoparticles: applications for environmental remediation. J
Nanobiotechnology; 16(1):84.
[32]. Abolarinwa, T.O., Ajose, D.J., Oluwarinde, B.O.,
Fri, J., Montso, K.P., Fayemi, O.E., et al., 2022, Plant-derived nanoparticles
as alternative therapy against Diarrheal pathogens in the era of antimicrobial
resistance: A review. Front Microbiol.; 13:1007115.
[33]. Saravanan, A., Maruthapandi, M., Das, P., Luong,
JHT., Gedanken, A., 2021, Green Synthesis of Multifunctional Carbon Dots with
Antibacterial Activities. Nanomaterials (Basel);11(2).
[34]. Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y.,
Wang, Y., et al., 2018, Identification of exosome-like nanoparticle-derived
microRNAs from 11 edible fruits and vegetables. PeerJ.; (6)5186.
[35]. Großkopf, A., Simm, A., 2020, Carbohydrates in
nutrition: friend or foe? Z Gerontol Geriatr.; 53(4):290–4.
[36]. Selvaraju, N., Ganesh, P.S., Palrasu, V.,
Venugopal, G., Mariappan, V., 2022, Evaluation of Antimicrobial and Antibiofilm
Activity of Fruit Juice Based Carbon Dots against. ACS Omega.; 7(41):36227–34.
[37]. Somboonwiwat, K., Marcos, M., Tassanakajon, A.,
Klinbunga, S., Aumelas, A., Romestand, B., et al., 2005, Recombinant expression
and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the
black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 29(10):841–51.
[38]. Liu, F., Liu, Y., Li, F., Dong, B., Xiang, J.,
2005, Molecular cloning and expression profile of putative
antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Mar
Biotechnol.; 7(6):600–8.
[39]. Kang, C.J., Wang, J.X., Zhao, X.F., Yang, X.M.,
Shao, H.L., Xiang, J.H., 2004, Molecular cloning and expression analysis of
Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus
chinensis. Fish Shellfish Immunol.; 16(4):513–25.
[40]. Supungul, P., Klinbunga, S., Pichyangkura, R.,
Jitrapakdee, S., Hirono, I., Aoki, T., et al., 2002, Identification of
immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar
Biotechnol.; 4(5):487–94.
[41]. Supungul, P., Tang, S., Maneeruttanarungroj, C.,
Rimphanitchayakit, V., Hirono, I., Aoki, T., et al., 2008, Cloning, expression
and antimicrobial activity of crustinPm1, a major isoform of crustin, from the
black tiger shrimp Penaeus monodon. Dev Comp Immunol.; 32(1):61–70.
[42]. Yang, S., Huang, H., Wang, F., Aweya, J.J.,
Zheng, Z., Zhang, Y., 2018, Prediction and characterization of a novel
hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino
Acids.; 50(8):995–1005.
[43]. Wang, Z., de la Fuente-Núñez, C., Shen, Y.,
Haapasalo, M., Hancock, R.E.W., 2015, Treatment of Oral Multispecies Biofilms
by an Anti-Biofilm Peptide. PLoS One.; 10(7)-0132512.
[44]. Zhang, W., Xu, X., Zhang, J., Ye, T., Zhou, Q.,
Xu, Y., Li, W., Hu, Z., et al., 2022, Discovery and characterization of a New
Crustin antimicrobial peptide from amphibalanus amphitrite. Pharmaceutics.; 14(2):413.
[45]. Zhang, J., Li, F., Wang, Z., Xiang, J., 2007,
Cloning and recombinant expression of a crustin-like gene from Chinese shrimp,
Fenneropenaeus chinensis. J Biotechnol.; 127(4):605–14.
[46]. Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D.,
2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone
as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the
Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of
long-term effects of medical implants, 29(2).
[47]. Kavarthapu, A. and Malaiappan, S., 2019. Comparative
evaluation of demineralized bone matrix and type II collagen membrane versus
eggshell powder as a graft material and membrane in rat model. Indian
Journal of Dental Research, 30(6), pp.877-880.
[48]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.