Comprehensive Review of Dental Implant Surface Characterization: Techniques and Clinical Implications

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.06.Art008

Authors : Vishnu Priya, Vinay Sivasamy, Nadhirah Faiz

Abstract:

The surface features of dental implants are critical to their effectiveness because they affect the osseointegration process and biological interactions. This paper examines the many approaches to surface characterization of dental implants with a focus on additive and subtractive methods. The efficiency of subtractive techniques, such as laser microtexturing, sandblasting, acid etching, and anodization, in enhancing surface roughness and biocompatibility is examined. By using these methods, microstructural characteristics that promote cell adhesion and quicken osseointegration can be produced. The potential of additive techniques, including coatings made of zirconia and hydroxyapatite or calcium phosphate, to improve bone integration and production, is investigated. The evaluation also emphasizes how various implant manufacturers apply surface changes and cutting-edge technologies, which are critical for maximizing implant longevity and performance. The use of nanoparticles such as titanium dioxide, zirconium dioxide, and zinc oxide in recent developments in implant surface coatings is highlighted because of their potential to improve bioactivity and address issues such peri-implantitis. Enhancing antibacterial qualities and bone healing with the addition of chitosan and copper and silver nanoparticles is a potential strategy. In summary, this research highlights the significance of accurate surface characterization and continuous technological progress in improving the longevity and efficacy of dental implants. Subsequent investigations ought to concentrate on enhancing these techniques and converting discoveries into better medical results.

References:

[1].      Yamamoto, S. and Shiga, H., 2018. Masticatory performance and oral health-related quality of life before and after complete denture treatment. Journal of Prosthodontic Research, 62(3), pp. 370-374.

[2].      Steele, J.G., Sanders, A.E., Slade, G.D., Allen, P.F., Lahti, S., Nuttall, N. and Spencer, A.J., 2004. How do age and tooth loss affect oral health impacts and quality of life? A study comparing two national samples. Community Dentistry and Oral Epidemiology, 32(2), pp. 107-114.

[3].      Block, M.S., 2018. Dental implants: The last 100 years. Journal of Oral and Maxillofacial Surgery, 76(1), pp. 11-26.

[4].      Khazaei, S., Firouzei, M.S., Sadeghpour, S., Jahangiri, P., Savabi, O., Keshteli, A.H. and Adibi, P., 2012. Edentulism and tooth loss in Iran: SEPAHAN systematic review No. 6. International Journal of Preventive Medicine, 3(Suppl1), p. S42.

[5].      Gupta, A., Dhanraj, M. and Sivagami, G., 2010. Status of surface treatment in endosseous implant: a literary overview. Indian Journal of Dental Research, 21(3), pp. 433-438.

[6].      Feine, J.S., 2002. The McGill consensus statement on overdentures. Int. J. Prosthodont., 15, pp. 413-414.

[7].      Rodriguez, B.R., Rizzo, S. and Zampetti, P., 2002. Considerazioni storicocliniche sull’evoluzione dell’implantologia. Rivista di Storia della Medicina XII NS, 33(1-2), pp. 149-56.

[8].      Pasqualini, U. and Pasqualini, M.E., 2009. The History of Implantology. In Treatise of Implant Dentistry: The Italian Tribute to Modern Implantology. Ariesdue.

[9].      Abraham, C.M., 2014. Suppl 1: A brief historical perspective on dental implants, their surface coatings and treatments. The Open Dentistry Journal, 8, p. 50.

[10].  Kawahara, D. and Kawahara, D., 1959. Part 1-The history and concept of implant. Journal of the Japan Prosthodontic Society, 3(1), pp. 97-100.

[11].  Sullivan, R.M., 2001. Implant dentistry and the concept of osseointegration: a historical perspective. Journal of the California Dental Association, 29(11), pp. 737-744.

[12].  Pal, T.K., 2015. Fundamentals and history of implant dentistry. Journal of the International Clinical Dental Research Organization, 7(Suppl 1), pp. S6-S12.

[13].  Branemark, P.I., 1985. Tissue-Integrated Prostheses. Osseointegration in clinical dentistry, pp. 11-344.

[14].  Rao, B.S. and Bhat, V.S., 2015. Dental implants: A boon to dentistry. Archives of Medicine and Health Sciences, 3(1), pp. 131-137.

[15].  Albrektsson, T. and Zarb, G.A., 1993. Current interpretations of the osseointegrated response: clinical significance. International Journal of Prosthodontics, 6(2).

[16].  Branemark, P.I., 1983. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry, 50(3), pp.399-410.

[17].  Sundgren, J. E., Bodö, P., Lundström, I., Berggren, A., an Hellem, S., (1985. Auger electron spectroscopic studies of stainless-steel implants. Journal of Biomedical Materials Research, 19(6), 663–671. https://doi.org/10.1002/jbm.820190606.

[18].  Albrektsson, T., and Wennerberg, A., 2004. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International journal of prosthodontics, 17(5), 536–543.

[19].  Coelho, P. G., Granjeiro, J. M., Romanos, G. E., Suzuki, M., Silva, N. R., Cardaropoli, G., Thompson, V. P., and Lemons, J. E., 2009. Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 579–596. https://doi.org/10.1002/jbm.b.31264.

[20].  Lemons J. E., 2004. Biomaterials, biomechanics, tissue healing, and immediate-function dental implants. The Journal of Oral Implantology, 30(5), 318–324. https://doi.org/10.1563/0712.1.

[21].  Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y., 2007. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials: Official publication of the Academy of Dental Materials, 23(7), 844–854. https://doi.org/10.1016/j.dental.2006.06.025

[22].  Coelho, P.G., Granjeiro, J.M., Romanos, G.E., Suzuki, M., Silva, N.R.F., Cardaropoli, G., Thompson, V.P. and Lemons, J.E. 2009b. Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials 88: 579–596.

[23].  Stanford C. M., 2008. Surface modifications of dental implants. Australian Dental Journal, 53 Suppl 1, S26–S33. https://doi.org/10.1111/j.1834-7819.2008.00038.x

[24].  Krishna Kumar, U., Ramesh Bhat, T.R., Harish, P.V., Sameer, V.K. and Gangaiah, M., 2011. Nanobiotechnology Approaches to Design Better Dental Implant Materials. Trends in Biomaterials & Artificial Organs, 25(1).

[25].  Triplett, R.G., Frohberg, U., Sykaras, N. and Woody, R.D., 2003. Implant materials, design, and surface topographies: their influence on osseointegration of dental implants. Journal of Long-Term Effects of Medical Implants, 13(6).

[26].  Ehrenfest, D.M.D., Coelho, P.G., Kang, B.S., Sul, Y.T. and Albrektsson, T., 2010. Classification of osseointegrated implant surfaces: materials, chemistry, and topography. Trends in Biotechnology, 28(4), pp. 198-206.

[27].  Søballe K., 1993. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta orthopaedica Scandinavica. Supplementum, 255, 1–58. https://doi.org/10.3109/17453679309155636

[28].  Steinemann, S.G., 1998. Titanium—the material of choice?. Periodontology 2000, 17(1), pp. 7-21.

[29].  Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A. and Steinemann, S.G., 2004. Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of Dental Research, 83(7), pp.529-533.

[30].  Sadati Tilebon, S.M., Emamian, S.A., Ramezanpour, H., Yousefi, H., Özcan, M., Naghib, S.M., Zare, Y. and Rhee, K.Y., 2022. Intelligent modeling and optimization of titanium surface etching for dental implant application. Scientific Reports, 12(1), p.7184.

[31].  Oshida, Y. and Daly, J., 1990. Fatigue damage evaluation of shot peened high strength aluminum alloy. In Surface Engineering (pp. 404-416). Dordrecht: Springer Netherlands.

[32].  Wen, X., Wang, X. and Zhang, N., 1996. Microrough surface of metallic biomaterials: a literature review. Bio-Medical Materials and Engineering, 6(3), pp.173-189.

[33].  Coelho, Paulo G., José M. Granjeiro, George E. Romanos, Marcelo Suzuki, Nelson RF Silva, Giuseppe Cardaropoli, Van P. Thompson, and Jack E. Lemons. "Basic research methods and current trends of dental implant surfaces." Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 88, no. 2 (2009): 579-596.

[34].  Ellingsen, J.E., Johansson, C.B., Wennerberg, A. and Holmén, A., 2004. Improved Retention and Bone-to-Implant Contact with Fluoride-Modified Titanium Implants. International Journal of Oral & Maxillofacial Implants, 19(5).

[35].  DeWald, A.T., Rankin, J.E., Hill, M.R., Lee, M.J. and Chen, H.L., 2004. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening. J. Eng. Mater. Technol., 126(4), pp. 465-473.

[36].  Fairand, B.P., Wilcox, B.A., Gallagher, W.J. and Williams, D.N., 1972. Laser shock‐induced microstructural and mechanical property changes in 7075 aluminium. Journal of Applied Physics, 43(9), pp. 3893-3895.

[37].  Gaggl, A., Schultes, G., Müller, W.D. and Kärcher, H., 2000. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study. Biomaterials, 21(10), pp. 1067-1073.

[38].  De Groot, K., Wolke, J.G.C. and Jansen, J.A., 1998. Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2), pp. 137-147.

[39].  Morris, H.F., Ochi, S., Spray, J.R. and Olson, J.W., 2000. Periodontal‐Type Measurements Associated with Hydroxyapatite‐Coated and Non—HA‐Coated Implants: Uncovering to 36 Months. Annals of Periodontology, 5(1), pp.56-67.

[40].  Barrere, F., Van Der Valk, C.M., Meijer, G., Dalmeijer, R.A.J., De Groot, K. and Layrolle, P., 2003. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67(1), pp.655-665.

[41].  Kohal, R.J., Weng, D., Bächle, M. and Strub, J.R., 2004. Loaded custom‐made zirconia and titanium implants show similar osseointegration: an animal experiment. Journal of Periodontology75(9), pp. 1262-1268.

[42].  Martin, J. Y., Schwartz, Z., Hummert, T. W., Schraub, D. M., Simpson, J., Lankford, J., Jr, Dean, D. D., Cochran, D. L., and Boyan, B. D., 1995. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). Journal of Biomedical Materials Research, 29(3), 389–401. https://doi.org/10.1002/jbm.82029031.

[43].  Weinstein, A.M., Klawitter, J.J. and Cook, S.D., 1980. Implant‐bone interface characteristics of bioglass dental implants. Journal of Biomedical Materials Research, 14(1), pp. 23-29.

[44].  Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L. and Hüttig, F., 2018. Surface characteristics of dental implants: A review. Dental Materials, 34(1), pp. 40-57.

[45].  Degidi, M., Nardi, D. and Piattelli, A., 2012. 10‐year follow‐up of immediately loaded implants with TiUnite porous anodized surface. Clinical Implant Dentistry and Related Research, 14(6), pp. 828-838.

[46].  Berglundh, T., Armitage, G., Araujo, M.G., Avila‐Ortiz, G., Blanco, J., Camargo, P.M., Chen, S., Cochran, D., Derks, J., Figuero, E. and Hämmerle, C.H., 2018. Peri‐implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. Journal of Periodontology, 89, pp. S313-S318.

[47].  Niinomi, M., 2008. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), pp. 30-42.

[48].  Chokkattu, J.J., Mary, D.J., Shanmugam, R. and Neeharika, S., 2022. Embryonic toxicology evaluation of ginger-and clove-mediated titanium oxide nanoparticles-based dental varnish with zebrafish. The Journal of Contemporary Dental Practice, 23(11), p.1158.

[49].  Dharman, S., Maragathavalli, G., Shanmugam, R. and Shanmugasundaram, K., 2023. Current perspectives of nanotherapies in the prevention and treatment of radiotherapy/chemotherapy-induced oral mucositis in head and neck cancer—A narrative review. Journal of International Oral Health15(6), pp.491-499.

[50].  Francis, T., Chokkattu, J.J., Neeharika, S., Ramakrishnan, M. and Thangavelu, L., 2023. Embryonic Toxicology Evaluation of Dental Varnish Using Titanium Oxide Nanoparticles Synthesized Using Ginger and Rosemary. World Journal of Dentistry14(9), pp.791-796.

[51].  Khanna, N., Chokkattu, J.J., Neeharika, S., Ramakrishnan, M., Shanmugam, R. and Thangavelu, L., 2023. Anti-inflammatory Activity and Cytotoxic Effect of Ginger and Rosemary-mediated Titanium Oxide Nanoparticles-based Dental Varnish. World Journal of Dentistry14(9), pp.761-765.

[52].  Rajasekaran, K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V., Cicciù, M. and Minervini, G., Determination of red blood cell parameters for signs of iron deficiency anemia in patients with oral diseases. Minerva dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.

[53].  Sundaravadivelu, I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù, M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte balance in oral cancer patients. Minerva Dental and Oral Science. doi: 10.23736/S2724-6329.24.04902-7.

[54].  Rajendran, P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K., Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research68. DOI:10.29219/fnr.v68.9650.

[55].  Rajendran, P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar, A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immunity, Inflammation and Disease12(10), p.e70041. doi: 10.1002/iid3.70041.

[56].  Balhaddad, A.A., Kansara, A.A., Hidan, D., Weir, M.D., Xu, H.H. and Melo, M.A.S., 2019. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioactive Materials, 4, pp. 43-55.

[57].  Salaie, R.N., Besinis, A., Le, H., Tredwin, C. and Handy, R.D., 2020. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Materials Science and Engineering: C, 107, p.110210.

[58].  Renu, K., Gopalakrishnan, A.V. and Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress?. Odontology, pp.1-14. doi: 10.1007/s10266-024-01032-x.

[59].  Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.

[60].  Nie, L., Zhan, Y., Liu, H. and Tang, C., 2014. Novel β-type Zr–Mo–Ti alloys for biological hard tissue replacements. Materials & Design, 53, pp. 8-12.

[61].  Sanap, P., Hegde, V., Ghunawat, D., Patil, M., Nagaonkar, N. and Jagtap, V., 2020. Current applications of chitosan nanoparticles in dentistry: A review. Int J Appl Dent Sci, 6(4), pp. 81-84.

[62].  Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants29(2).

[63].  Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research30(6), pp.877-880.

[64].  Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal16(5), pp.310-317.