Comprehensive Review of Dental Implant Surface Characterization: Techniques and Clinical Implications
Abstract:
The
surface features of dental implants are critical to their effectiveness because
they affect the osseointegration process and biological interactions. This
paper examines the many approaches to surface characterization of dental
implants with a focus on additive and subtractive methods. The efficiency of
subtractive techniques, such as laser microtexturing, sandblasting, acid
etching, and anodization, in enhancing surface roughness and biocompatibility
is examined. By using these methods, microstructural characteristics that
promote cell adhesion and quicken osseointegration can be produced. The
potential of additive techniques, including coatings made of zirconia and
hydroxyapatite or calcium phosphate, to improve bone integration and
production, is investigated. The evaluation also emphasizes how various implant
manufacturers apply surface changes and cutting-edge technologies, which are
critical for maximizing implant longevity and performance. The use of
nanoparticles such as titanium dioxide, zirconium dioxide, and zinc oxide in
recent developments in implant surface coatings is highlighted because of their
potential to improve bioactivity and address issues such peri-implantitis.
Enhancing antibacterial qualities and bone healing with the addition of
chitosan and copper and silver nanoparticles is a potential strategy. In
summary, this research highlights the significance of accurate surface
characterization and continuous technological progress in improving the
longevity and efficacy of dental implants. Subsequent investigations ought to
concentrate on enhancing these techniques and converting discoveries into
better medical results.
References:
[1].
Yamamoto, S. and Shiga,
H., 2018. Masticatory performance and oral health-related quality of life
before and after complete denture treatment. Journal of Prosthodontic
Research, 62(3), pp. 370-374.
[2].
Steele, J.G., Sanders,
A.E., Slade, G.D., Allen, P.F., Lahti, S., Nuttall, N. and Spencer, A.J., 2004.
How do age and tooth loss affect oral health impacts and quality of life? A
study comparing two national samples. Community Dentistry and Oral
Epidemiology, 32(2), pp. 107-114.
[3].
Block, M.S., 2018.
Dental implants: The last 100 years. Journal of Oral and Maxillofacial
Surgery, 76(1), pp. 11-26.
[4].
Khazaei, S., Firouzei,
M.S., Sadeghpour, S., Jahangiri, P., Savabi, O., Keshteli, A.H. and Adibi, P.,
2012. Edentulism and tooth loss in Iran: SEPAHAN systematic review No. 6. International
Journal of Preventive Medicine, 3(Suppl1), p. S42.
[5].
Gupta, A., Dhanraj, M.
and Sivagami, G., 2010. Status of surface treatment in endosseous implant: a
literary overview. Indian Journal of Dental Research, 21(3),
pp. 433-438.
[6].
Feine, J.S., 2002. The
McGill consensus statement on overdentures. Int. J. Prosthodont., 15,
pp. 413-414.
[7].
Rodriguez, B.R., Rizzo,
S. and Zampetti, P., 2002. Considerazioni storicocliniche sull’evoluzione
dell’implantologia. Rivista di Storia della Medicina XII
NS, 33(1-2), pp. 149-56.
[8].
Pasqualini, U. and
Pasqualini, M.E., 2009. The History of Implantology. In Treatise of
Implant Dentistry: The Italian Tribute to Modern Implantology. Ariesdue.
[9].
Abraham, C.M., 2014.
Suppl 1: A brief historical perspective on dental implants, their surface
coatings and treatments. The Open Dentistry Journal, 8, p. 50.
[10]. Kawahara, D. and Kawahara, D., 1959. Part 1-The history and
concept of implant. Journal of the Japan Prosthodontic Society, 3(1),
pp. 97-100.
[11]. Sullivan, R.M., 2001. Implant dentistry and the concept of
osseointegration: a historical perspective. Journal of the California
Dental Association, 29(11), pp. 737-744.
[12]. Pal, T.K., 2015. Fundamentals and history of implant
dentistry. Journal of the International Clinical Dental Research
Organization, 7(Suppl 1), pp. S6-S12.
[13]. Branemark, P.I., 1985. Tissue-Integrated
Prostheses. Osseointegration in clinical dentistry, pp. 11-344.
[14]. Rao, B.S. and Bhat, V.S., 2015. Dental implants: A boon to
dentistry. Archives of Medicine and Health Sciences, 3(1), pp.
131-137.
[15]. Albrektsson, T. and Zarb, G.A., 1993. Current interpretations
of the osseointegrated response: clinical significance. International
Journal of Prosthodontics, 6(2).
[16]. Branemark, P.I., 1983. Osseointegration and its experimental
background. The Journal of Prosthetic Dentistry, 50(3),
pp.399-410.
[17]. Sundgren, J. E., Bodö, P., Lundström, I., Berggren, A., an
Hellem, S., (1985. Auger electron spectroscopic studies of stainless-steel
implants. Journal of Biomedical Materials Research, 19(6),
663–671. https://doi.org/10.1002/jbm.820190606.
[18]. Albrektsson, T., and Wennerberg, A., 2004. Oral implant
surfaces: Part 1--review focusing on topographic and chemical properties of
different surfaces and in vivo responses to them. The International
journal of prosthodontics, 17(5), 536–543.
[19]. Coelho, P. G., Granjeiro, J. M., Romanos, G. E., Suzuki, M.,
Silva, N. R., Cardaropoli, G., Thompson, V. P., and Lemons, J. E., 2009. Basic
research methods and current trends of dental implant surfaces. Journal
of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2),
579–596. https://doi.org/10.1002/jbm.b.31264.
[20]. Lemons J. E., 2004. Biomaterials, biomechanics, tissue
healing, and immediate-function dental implants. The Journal of Oral
Implantology, 30(5), 318–324. https://doi.org/10.1563/0712.1.
[21]. Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq,
Y., 2007. Surface treatments of titanium dental implants for rapid
osseointegration. Dental materials: Official publication of the Academy of
Dental Materials, 23(7), 844–854. https://doi.org/10.1016/j.dental.2006.06.025
[22]. Coelho, P.G., Granjeiro, J.M., Romanos,
G.E., Suzuki, M., Silva, N.R.F., Cardaropoli, G., Thompson, V.P. and Lemons,
J.E. 2009b. Basic research methods and current trends of dental implant
surfaces. Journal of Biomedical Materials Research Part B: Applied
Biomaterials 88: 579–596.
[23]. Stanford C. M., 2008. Surface modifications of dental
implants. Australian Dental Journal, 53 Suppl 1, S26–S33. https://doi.org/10.1111/j.1834-7819.2008.00038.x
[24]. Krishna Kumar, U., Ramesh Bhat, T.R., Harish, P.V., Sameer,
V.K. and Gangaiah, M., 2011. Nanobiotechnology Approaches to Design Better
Dental Implant Materials. Trends in Biomaterials & Artificial
Organs, 25(1).
[25]. Triplett, R.G., Frohberg, U., Sykaras, N. and Woody, R.D.,
2003. Implant materials, design, and surface topographies: their influence on
osseointegration of dental implants. Journal of Long-Term Effects of Medical
Implants, 13(6).
[26]. Ehrenfest, D.M.D., Coelho, P.G., Kang, B.S., Sul, Y.T. and
Albrektsson, T., 2010. Classification of osseointegrated implant surfaces:
materials, chemistry, and topography. Trends in Biotechnology, 28(4),
pp. 198-206.
[27]. Søballe K., 1993. Hydroxyapatite ceramic coating for bone
implant fixation. Mechanical and histological studies in dogs. Acta
orthopaedica Scandinavica. Supplementum, 255, 1–58. https://doi.org/10.3109/17453679309155636
[28]. Steinemann, S.G., 1998. Titanium—the material of
choice?. Periodontology 2000, 17(1), pp. 7-21.
[29]. Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer,
A.J., Cochran, D.L., Hoffmann, B., Lussi, A. and Steinemann, S.G., 2004.
Enhanced bone apposition to a chemically modified SLA titanium surface. Journal
of Dental Research, 83(7), pp.529-533.
[30]. Sadati Tilebon, S.M., Emamian, S.A., Ramezanpour, H.,
Yousefi, H., Özcan, M., Naghib, S.M., Zare, Y. and Rhee, K.Y., 2022.
Intelligent modeling and optimization of titanium surface etching for dental
implant application. Scientific Reports, 12(1), p.7184.
[31]. Oshida, Y. and Daly, J., 1990. Fatigue damage evaluation of
shot peened high strength aluminum alloy. In Surface Engineering (pp.
404-416). Dordrecht: Springer Netherlands.
[32]. Wen, X., Wang, X. and Zhang, N., 1996. Microrough surface of
metallic biomaterials: a literature review. Bio-Medical Materials and
Engineering, 6(3), pp.173-189.
[33]. Coelho, Paulo G., José M. Granjeiro, George E. Romanos,
Marcelo Suzuki, Nelson RF Silva, Giuseppe Cardaropoli, Van P. Thompson, and
Jack E. Lemons. "Basic research methods and current trends of dental
implant surfaces." Journal of Biomedical Materials Research Part B:
Applied Biomaterials: An Official Journal of The Society for Biomaterials, The
Japanese Society for Biomaterials, and The Australian Society for Biomaterials
and the Korean Society for Biomaterials 88, no. 2 (2009): 579-596.
[34]. Ellingsen, J.E., Johansson, C.B., Wennerberg, A. and Holmén,
A., 2004. Improved Retention and Bone-to-Implant Contact with Fluoride-Modified
Titanium Implants. International Journal of Oral & Maxillofacial
Implants, 19(5).
[35]. DeWald, A.T., Rankin, J.E., Hill, M.R., Lee, M.J. and Chen,
H.L., 2004. Assessment of tensile residual stress mitigation in alloy 22 welds
due to laser peening. J. Eng. Mater. Technol., 126(4), pp. 465-473.
[36]. Fairand, B.P., Wilcox, B.A., Gallagher, W.J. and Williams,
D.N., 1972. Laser shock‐induced microstructural and mechanical property changes
in 7075 aluminium. Journal of Applied Physics, 43(9), pp. 3893-3895.
[37]. Gaggl, A., Schultes, G., Müller, W.D. and Kärcher, H., 2000.
Scanning electron microscopical analysis of laser-treated titanium implant
surfaces—A comparative study. Biomaterials, 21(10), pp. 1067-1073.
[38]. De Groot, K., Wolke, J.G.C. and Jansen, J.A., 1998. Calcium
phosphate coatings for medical implants. Proceedings of the Institution of
Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2),
pp. 137-147.
[39]. Morris, H.F., Ochi, S., Spray, J.R. and Olson, J.W., 2000.
Periodontal‐Type Measurements Associated with Hydroxyapatite‐Coated and
Non—HA‐Coated Implants: Uncovering to 36 Months. Annals of Periodontology, 5(1),
pp.56-67.
[40]. Barrere, F., Van Der Valk, C.M., Meijer, G., Dalmeijer,
R.A.J., De Groot, K. and Layrolle, P., 2003. Osteointegration of biomimetic
apatite coating applied onto dense and porous metal implants in femurs of
goats. Journal of Biomedical Materials Research Part B: Applied
Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese
Society for Biomaterials, and The Australian Society for Biomaterials and the
Korean Society for Biomaterials, 67(1), pp.655-665.
[41]. Kohal, R.J., Weng, D., Bächle, M. and Strub, J.R., 2004.
Loaded custom‐made zirconia and titanium implants show similar
osseointegration: an animal experiment. Journal of Periodontology, 75(9),
pp. 1262-1268.
[42]. Martin, J. Y., Schwartz, Z., Hummert, T. W., Schraub, D. M.,
Simpson, J., Lankford, J., Jr, Dean, D. D., Cochran, D. L., and Boyan, B. D.,
1995. Effect of titanium surface roughness on proliferation, differentiation,
and protein synthesis of human osteoblast-like cells (MG63). Journal of
Biomedical Materials Research, 29(3), 389–401. https://doi.org/10.1002/jbm.82029031.
[43]. Weinstein, A.M., Klawitter, J.J. and Cook, S.D., 1980.
Implant‐bone interface characteristics of bioglass dental implants. Journal
of Biomedical Materials Research, 14(1), pp. 23-29.
[44]. Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L. and
Hüttig, F., 2018. Surface characteristics of dental implants: A review. Dental
Materials, 34(1), pp. 40-57.
[45]. Degidi, M., Nardi, D. and Piattelli, A., 2012. 10‐year
follow‐up of immediately loaded implants with TiUnite porous anodized
surface. Clinical Implant Dentistry and Related Research, 14(6),
pp. 828-838.
[46]. Berglundh, T., Armitage, G., Araujo, M.G., Avila‐Ortiz, G.,
Blanco, J., Camargo, P.M., Chen, S., Cochran, D., Derks, J., Figuero, E. and
Hämmerle, C.H., 2018. Peri‐implant diseases and conditions: Consensus report of
workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and
Peri‐Implant Diseases and Conditions. Journal of Periodontology, 89,
pp. S313-S318.
[47]. Niinomi, M., 2008. Mechanical biocompatibilities of titanium
alloys for biomedical applications. Journal of the Mechanical Behavior
of Biomedical Materials, 1(1), pp. 30-42.
[48]. Chokkattu, J.J., Mary, D.J., Shanmugam, R.
and Neeharika, S., 2022. Embryonic toxicology evaluation of ginger-and
clove-mediated titanium oxide nanoparticles-based dental varnish with
zebrafish. The Journal of Contemporary Dental Practice, 23(11), p.1158.
[49]. Dharman, S., Maragathavalli, G., Shanmugam,
R. and Shanmugasundaram, K., 2023. Current perspectives of nanotherapies in the
prevention and treatment of radiotherapy/chemotherapy-induced oral mucositis in
head and neck cancer—A narrative review. Journal of International Oral
Health, 15(6), pp.491-499.
[50]. Francis, T., Chokkattu, J.J., Neeharika,
S., Ramakrishnan, M. and Thangavelu, L., 2023. Embryonic Toxicology Evaluation
of Dental Varnish Using Titanium Oxide Nanoparticles Synthesized Using Ginger
and Rosemary. World Journal of Dentistry, 14(9),
pp.791-796.
[51]. Khanna, N., Chokkattu, J.J., Neeharika, S.,
Ramakrishnan, M., Shanmugam, R. and Thangavelu, L., 2023. Anti-inflammatory
Activity and Cytotoxic Effect of Ginger and Rosemary-mediated Titanium Oxide
Nanoparticles-based Dental Varnish. World Journal of Dentistry, 14(9),
pp.761-765.
[52]. Rajasekaran,
K., Renu, K., Sankaran, K., Veeraraghavan, V.P., Rengasamy, G., Ronsivalle, V.,
Cicciù, M. and Minervini, G., Determination of red blood cell parameters for
signs of iron deficiency anemia in patients with oral diseases. Minerva
dental and oral science. DOI: 10.23736/S2724-6329.24.04907-6.
[53]. Sundaravadivelu,
I., Renu, K., Kavitha, S., Priya, V.V., Gayathri, R., Ronsivalle, V., Cicciù,
M. and Minervini, G., 2024. Elucidating hematological profile and electrolyte
balance in oral cancer patients. Minerva Dental and Oral Science.
doi: 10.23736/S2724-6329.24.04902-7.
[54]. Rajendran,
P., Renu, K., Abdallah, B.M., Ali, E.M., Veeraraghavan, V.P., Sivalingam, K.,
Rustagi, Y., Abdelsalam, S.A., Ibrahim, R.I.H. and Al-Ramadan, S.Y., 2024.
Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food & Nutrition Research, 68. DOI:10.29219/fnr.v68.9650.
[55]. Rajendran,
P., Renu, K., Ali, E.M., Genena, M.A.M., Veeraraghavan, V., Sekar, R., Sekar,
A.K., Tejavat, S., Barik, P. and Abdallah, B.M., 2024. Promising and
challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer
therapy. Immunity, Inflammation and Disease, 12(10),
p.e70041. doi: 10.1002/iid3.70041.
[56]. Balhaddad, A.A., Kansara, A.A., Hidan, D., Weir, M.D., Xu,
H.H. and Melo, M.A.S., 2019. Toward dental caries: Exploring nanoparticle-based
platforms and calcium phosphate compounds for dental restorative materials. Bioactive
Materials, 4, pp. 43-55.
[57]. Salaie, R.N., Besinis, A., Le, H., Tredwin, C. and Handy,
R.D., 2020. The biocompatibility of silver and nanohydroxyapatite coatings on
titanium dental implants with human primary osteoblast cells. Materials
Science and Engineering: C, 107, p.110210.
[58]. Renu, K., Gopalakrishnan, A.V. and
Madhyastha, H., 2024. Is periodontitis triggering an inflammatory response in
the liver, and does this reaction entail oxidative stress?. Odontology,
pp.1-14. doi:
10.1007/s10266-024-01032-x.
[59]. Renu, K., 2024. A molecular viewpoint of
the intricate relationships among HNSCC, HPV infections, and the oral
microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial
Surgery, p.102134.
[60]. Nie, L., Zhan, Y., Liu, H. and Tang, C., 2014. Novel β-type
Zr–Mo–Ti alloys for biological hard tissue replacements. Materials
& Design, 53, pp. 8-12.
[61]. Sanap, P., Hegde, V., Ghunawat, D., Patil, M., Nagaonkar, N.
and Jagtap, V., 2020. Current applications of chitosan nanoparticles in dentistry:
A review. Int J Appl Dent Sci, 6(4), pp. 81-84.
[62]. Kaarthikeyan,
G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone
Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material
in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized
Split-Mouth Study. Journal of long-term effects of medical implants, 29(2).
[63]. Kavarthapu,
A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone
matrix and type II collagen membrane versus eggshell powder as a graft material
and membrane in rat model. Indian Journal of Dental Research, 30(6),
pp.877-880.
[64]. Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.