Thuja Occidentalis as a Promising Natural Therapy in Oral Squamous Cell Carcinoma: A Literature Review
Abstract:
Oral cancer continues to
be one of the leading causes of death globally, being more prevalent in
developing countries. Radiation, chemotherapy, targeted therapy, immunotherapy,
hormone-based therapies, and surgery are common treatment plans for oral cancer
that lead to a range of short- and long-term side effects resulting in an
urgent need to develop treatment options with minimal or no adverse effects.
Recently, numerous bioactive compounds derived from various plants have
garnered attention as potential therapeutic options for cancer treatment.Thuja
occidentalis, also known as Eastern White Cedar, has been traditionally used
for its medicinal properties. The components of this plant like thujone,
flavonoids, and polysaccharides, have demonstrated significant pharmacological
properties, including antimicrobial, antioxidant, anti-inflammatory, and
anti-cancer effects. These compounds work through various mechanisms, such as
promoting apoptosis, reducing oxidative stress, and enhancing the immune
response. There is no literature available assessing the role of T.occidentalis
in Oral Squamous Cell Carcinoma (OSCC) and the current article will be a novel
overview discussing its pharmacological properties and its potential role in
the treatment of OSCC. However, further research is needed to understand the
precise molecular mechanisms, optimal dosage, and evaluate the synergistic
effects with conventional cancer therapies.
References:
[1] Jayaraman,
S., Natarajan, S.R., Veeraraghavan, V.P. and Jasmine, S., 2023, Unveiling the
anti-cancer mechanisms of calotropin: Insights into cell growth inhibition,
cell cycle arrest, and metabolic regulation in human oral squamous carcinoma
cells (HSC-3), Journal of Oral Biology
and Craniofacial Research, 13(6), doi: 10.1016/j.jobcr.2023.09.002
[2]. Chanda,
S., Kataki, A.C., Dogra, V., Bhagabaty, S.M., Varma, D. and Hegde, S., 2019,
Community Based Mobile Screening Programme for Oral, Breast and Cervical
Cancers: A Programmatic Insight from rural Assam, India, Texila International Journal of Public Health, 7(1), doi:
10.21522/TIJPH.2013.07.01.Art009
[3]. Kumar,
R.S., Amudha, P., Vidya, R., Kalpana, C.S. and Sudhashini, S., 2024, A Review
on Anticancer Properties of Chebulagic Acid from Terminalia chebula, Texila International Journal of Public Health , 12(3) doi:
10.21522/TIJPH.2013.12.03.Art047
[4].
Selvaraj, F.M., Joseph, A.P., Pillai, V.R., Ramani, P., Pazhani, J. and Mony,
V., 2023, Significance of tumour budding and invasive characteristics in
grading of oral squamous cell carcinoma, Journal of
Oral and Maxillofacial Pathology, 27(4), doi: 10.4103/jomfp.jomfp_410_23
[5]. Ojeda,
D., Huber, M.A. and Kerr, A.R., 2020, Oral potentially malignant disorders and
oral cavity cancer, Dermatologic Clinics, 38(4), pp.507-521, doi:
10.1016/j.det.2020.05.011.
[6]. Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., Nice, E.C., Tang,
J. and Huang, C., 2023, Oral squamous cell carcinomas: state of the field and
emerging directions, International Journal
of Oral Science, 15(1), p.44,
doi:10.1038/s41368-023-00249-w.
[7]. McCord, C., Kiss, A., Magalhaes, M.A., Leong, I.T., Jorden, T. and
Bradley, G., 2021, Oral squamous cell carcinoma associated with precursor
lesions, Cancer Prevention Research, 14(9), pp.873-884, doi:10.1158/1940-6207.CAPR-21-0047.
[8]. Irani, S., 2022, Diagnostic Strategies for Early Detection of Oral
Squamous Cell Carcinoma: A Review Article, Avicenna
Journal of Dental Research, 14(3),
pp.137-143, doi:10.34172/ajdr.2022.25.
[9]. Ling, Z., Cheng, B. and Tao, X., 2021, Epithelial‐to‐mesenchymal
transition in oral squamous cell carcinoma: challenges and opportunities, International Journal of Cancer, 148(7), pp.1548-1561, doi:10.1002/ijc.33352.
[10]. Naeem, A., Hu, P., Yang, M., Zhang, J., Liu, Y., Zhu, W. and
Zheng, Q., 2022, Natural products as anticancer agents: Current status and
future perspectives, Molecules, 27(23), p.8367, doi:10.3390/molecules27238367.
[11]. Caruntu, S., Ciceu, A., Olah, N.K., Don, I., Hermenean, A. and
Cotoraci, C., 2020, Thuja occidentalis L.(Cupressaceae): Ethnobotany,
phytochemistry and biological activity, Molecules, 25(22), p.5416, doi:10.3390/molecules25225416.
[12]. Thakur, M., Sobti, R. and Kaur, T., 2023, Asian Pacific Journal of
Tropical Medicine, Asian Pacific Journal
of Tropical Medicine, 16(4),
doi:10.4103/1995-7645.374353.
[13]. Adhikary, K., 2020, Plant
with Beneficial Properties Thuja occidentalis L.(Cupressaceae)-A Review, International Journal for Research in Applied Science &
Engineering Technology, 8, pp.2407-2409,
doi:10.22214/ijraset.2020.6387.
[14]. Ghantous, Y.,
Schussel, J.L. and Brait, M., 2018, Tobacco and alcohol-induced epigenetic
changes in oral carcinoma, Current Opinion in
Oncology, 30(3), pp.152-158, doi:10.1097/CCO.0000000000000444.
[15]. Markopoulos, A.K.,
2012, Current aspects on oral squamous cell carcinoma, The Open Dentistry Journal, 6, p.126, doi:10.2174/1874210601206010126.
[16]. Devi, P., Dwivedi,
R., Sankar, R., Jain, A., Gupta, S. and Gupta, S., 2024, Unraveling the Genetic
Web: H-Ras Expression and Mutation in Oral Squamous Cell Carcinoma—A Systematic
Review, Head and Neck Pathology, 18(1), p.21,
doi:10.1007/s12105-024-01623-8.
[17]. Krishna, A., Singh,
S., Singh, V., Kumar, V., Singh, U.S. and Sankhwar, S.N., 2018, Does Harvey-Ras
gene expression lead to oral squamous cell carcinoma? A clinicopathological
aspect, Journal of Oral and Maxillofacial
Pathology, 22(1), pp.65-72, doi:10.4103/jomfp.JOMFP_246_17.
[18]. Gunardi, I.,
Sufiawati, I., Goenawan, H., Herawati, D.M.D., Lesmana, R, and Abdullah, A.G.,
2023, Research Trends in Molecular Biological Studies on Oral Squamous Cell
Carcinoma: A Bibliometric Analysis, Oncology
Reviews, 17, p.11585, doi:10.3389/or.2023.11585.
[19]. Misra, J.R.
and Irvine, K.D., 2018, The Hippo signaling network and its biological
functions, Annual Review of Genetics, 52(1), pp.65-87, doi:
10.1146/annurev-genet-120417-031621.
[20]. Mesgari, H.,
Esmaelian, S., Nasiri, K., Ghasemzadeh, S., Doroudgar, P. and Payandeh, Z.,
2023, Epigenetic regulation in oral squamous cell carcinoma microenvironment: A
comprehensive review, Cancers, 15(23),
p.5600,doi:10.3390/cancers15235600.
[21]. Kim, S.Y., Han,
Y.K., Song, J.M., Lee, C.H., Kang, K., Yi, J.M. and Park, H.R., 2019,
Aberrantly hypermethylated tumor suppressor genes were identified in oral
squamous cell carcinoma (OSCC), Clinical
Epigenetics, 11, pp.1-12, doi:10.1186/s13148-019-0715-0.
[22]. Qiao, B., Li, S.,
Wang, D. and Wu, D., 2022, Genetics and Molecular Mechanisms of Oral and
Esophageal Squamous Cell Carcinoma, Frontiers in
Oncology, 12, p.874353, doi:10.3389/fonc.2022.874353.
[23]. Mastronikolis,
N.S., Kyrodimos, E., Piperigkou, Z., Spyropoulou, D., Delides, A., Giotakis,
E., Alexopoulou, M., Bakalis, N.A. and Karamanos, N.K., 2024, Matrix‐based molecular
mechanisms, targeting and diagnostics in oral squamous cell carcinoma, IUBMB Life, doi:10.1002/iub.2803.
[24]. Bharti, K., Sharma,
M., Vyas, G.K. and Sharma, S., 2022, A review on phytochemical pharmacological
and biological activities of thuja occidentalis, Asian Journal of Pharmaceutical Research and Development, 10(2),
pp.111-115. doi:10.22270/ajprd.v10i2.1105.
[25]. Naser, B., Bodinet,
C., Tegtmeier, M. and Lindequist, U., 2005, Thuja occidentalis (Arbor vitae): a
review of its pharmaceutical, pharmacological and clinical properties, Evidence‐Based Complementary and
Alternative Medicine, 2(1), pp.69-78, doi:10.1093/ecam/neh065.
[26]. Hovav, A.H. and
Wilensky, A., 2024, The role of the epithelial sentinels, Langerhans cells and
γδT cells, in oral squamous cell carcinoma, Periodontology 2000, doi:10.1111/prd.12544.
[27]. Wei, X.Y., Tan,
Y.Q. and Zhou, G., 2024, γδ T cells in oral diseases, Inflammation Research, 73(5),
pp.867-876, doi:10.1007/s00011-024-01870-z.
[28]. Liang, S.B.,
Zhang, Y.Y., Shen, C., Liang, C.H., Lai, B.Y., Dai, N., Li, Y.Q., Tian, Z.Y.,
Zhang, X.W., Jiang, Y. and Xiong, M., 2021, Chinese herbal medicine used with
or without conventional Western therapy for COVID-19: an evidence review of clinical
studies, Frontiers in Pharmacology, 11, p.583450,
doi:
10.3389/fphar.2020.583450.
[29]. Chan, K.F., Duarte,
J.D.G., Ostrouska, S. and Behren, A., 2022, γδ T cells in the tumor
microenvironment—Interactions with other immune cells, Frontiers in Immunology, 13, p.894315,
doi:10.3389/fimmu.2022.894315.
[30]. Zhou, Y., Liu,
J.Q., Zhou, Z.H., Lv, X.T., Chen, Y.Q., Sun, L.Q. and Chen, F.X., 2016,
Enhancement of CD3AK cell proliferation and killing ability by α-thujone, International Immunopharmacology, 30, pp.57-61,
doi:10.1016/j.intimp.2015.11.027.
[31]. Sunila, E.S.,
Hamsa, T.P. and Kuttan, G., 2011, Effect of Thuja occidentalis and its
polysaccharide on cell-mediated immune responses and cytokine levels of
metastatic tumor-bearing animals, Pharmaceutical
Biology, 49(10), pp.1065-1073, doi:10.3109/13880209.2011.565351.
[32]. Biswas, R., Mandal,
S.K., Dutta, S., Bhattacharyya, S.S., Boujedaini, N. and Khuda-Bukhsh, A.R.,
2011, Thujone‐rich fraction of
Thuja occidentalis demonstrates major anti‐cancer potentials:
Evidences from in vitro studies on A375 cells, Evidence‐Based
Complementary and Alternative Medicine, 2011(1), p.568148. doi:10.1093/ecam/neq042.
[33] Saha, S.,
Bhattacharjee, P., Mukherjee, S., Mazumdar, M., Chakraborty, S., Khurana, A.,
Nayak, D., Manchanda, R., Chakrabarty, R., Das, T. and Sa, G., 2014,
Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary
epithelial carcinoma cells, Oncology Reports, 31(4),
pp.1589-1598. doi:10.3892/or.2014.2993.
[34] Pudełek, M.,
Catapano, J., Kochanowski, P., Mrowiec, K., Janik-Olchawa, N., Czyż, J. and
Ryszawy, D., 2019, Therapeutic potential of monoterpene α-thujone, the main
compound of Thuja occidentalis L. essential oil,
against malignant glioblastoma multiforme cells in vitro, Fitoterapia, 134, pp.172-181.doi:10.1016/j.fitote.2019.02.020.
[35] Renu, K., 2024. A molecular viewpoint of the
intricate relationships among HNSCC, HPV infections, and the oral microbiota
dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery,
p.102134.
[36] Chang, L.C., Song,
L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M. and
Kinghorn, A.D., 2000, Bioactive Constituents of Thuja o ccidentalis. Journal of Natural Products, 63(9),
pp.1235-1238, doi:10.1021/np0001575.
[37] Bagot, J.L., 2020,
How to prescribe Thuja occidentalis in oncology? Analysis of the literature,
study of practices and personal experience, La Revue
d'Homéopathie, 11(3), pp.e26-e32, doi:10.1016/j.revhom.2020.07.001.
[38] Kaarthikeyan, G., Jayakumar, N.D. and
Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and
Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus
Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth
Study. Journal of long-term effects of medical implants, 29(2).
[39] Kavarthapu, A. and Malaiappan, S., 2019.
Comparative evaluation of demineralized bone matrix and type II collagen
membrane versus eggshell powder as a graft material and membrane in rat
model. Indian Journal of Dental Research, 30(6),
pp.877-880.
[40] Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal, 16(5), pp.310-317.