Thuja Occidentalis as a Promising Natural Therapy in Oral Squamous Cell Carcinoma: A Literature Review

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.06.Art004

Authors : Vishnu Priya Veeraraghavan, Chandini Rajkumar, Saranya Ramsridhar, Arul Prakash Francis, Vidya Kaliyan, Murali Balasubramaniam

Abstract:

Oral cancer continues to be one of the leading causes of death globally, being more prevalent in developing countries. Radiation, chemotherapy, targeted therapy, immunotherapy, hormone-based therapies, and surgery are common treatment plans for oral cancer that lead to a range of short- and long-term side effects resulting in an urgent need to develop treatment options with minimal or no adverse effects. Recently, numerous bioactive compounds derived from various plants have garnered attention as potential therapeutic options for cancer treatment.Thuja occidentalis, also known as Eastern White Cedar, has been traditionally used for its medicinal properties. The components of this plant like thujone, flavonoids, and polysaccharides, have demonstrated significant pharmacological properties, including antimicrobial, antioxidant, anti-inflammatory, and anti-cancer effects. These compounds work through various mechanisms, such as promoting apoptosis, reducing oxidative stress, and enhancing the immune response. There is no literature available assessing the role of T.occidentalis in Oral Squamous Cell Carcinoma (OSCC) and the current article will be a novel overview discussing its pharmacological properties and its potential role in the treatment of OSCC. However, further research is needed to understand the precise molecular mechanisms, optimal dosage, and evaluate the synergistic effects with conventional cancer therapies.

References:

[1] Jayaraman, S., Natarajan, S.R., Veeraraghavan, V.P. and Jasmine, S., 2023, Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3), Journal of Oral Biology and Craniofacial Research, 13(6), doi: 10.1016/j.jobcr.2023.09.002

[2]. Chanda, S., Kataki, A.C., Dogra, V., Bhagabaty, S.M., Varma, D. and Hegde, S., 2019, Community Based Mobile Screening Programme for Oral, Breast and Cervical Cancers: A Programmatic Insight from rural Assam, India, Texila International Journal of Public Health, 7(1), doi: 10.21522/TIJPH.2013.07.01.Art009

[3]. Kumar, R.S., Amudha, P., Vidya, R., Kalpana, C.S. and Sudhashini, S., 2024, A Review on Anticancer Properties of Chebulagic Acid from Terminalia chebula, Texila International Journal of Public Health , 12(3) doi: 10.21522/TIJPH.2013.12.03.Art047

[4]. Selvaraj, F.M., Joseph, A.P., Pillai, V.R., Ramani, P., Pazhani, J. and Mony, V., 2023, Significance of tumour budding and invasive characteristics in grading of oral squamous cell carcinoma,  Journal of Oral and Maxillofacial Pathology27(4), doi: 10.4103/jomfp.jomfp_410_23

[5]. Ojeda, D., Huber, M.A. and Kerr, A.R., 2020, Oral potentially malignant disorders and oral cavity cancer, Dermatologic Clinics, 38(4), pp.507-521, doi: 10.1016/j.det.2020.05.011.

[6]. Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., Nice, E.C., Tang, J. and Huang, C., 2023, Oral squamous cell carcinomas: state of the field and emerging directions, International Journal of Oral Science, 15(1), p.44, doi:10.1038/s41368-023-00249-w.

[7]. McCord, C., Kiss, A., Magalhaes, M.A., Leong, I.T., Jorden, T. and Bradley, G., 2021, Oral squamous cell carcinoma associated with precursor lesions, Cancer Prevention Research, 14(9), pp.873-884, doi:10.1158/1940-6207.CAPR-21-0047.

[8]. Irani, S., 2022, Diagnostic Strategies for Early Detection of Oral Squamous Cell Carcinoma: A Review Article, Avicenna Journal of Dental Research, 14(3), pp.137-143, doi:10.34172/ajdr.2022.25.

[9]. Ling, Z., Cheng, B. and Tao, X., 2021, Epithelialtomesenchymal transition in oral squamous cell carcinoma: challenges and opportunities, International Journal of Cancer, 148(7), pp.1548-1561, doi:10.1002/ijc.33352.

[10]. Naeem, A., Hu, P., Yang, M., Zhang, J., Liu, Y., Zhu, W. and Zheng, Q., 2022, Natural products as anticancer agents: Current status and future perspectives, Molecules, 27(23), p.8367, doi:10.3390/molecules27238367.

[11]. Caruntu, S., Ciceu, A., Olah, N.K., Don, I., Hermenean, A. and Cotoraci, C., 2020, Thuja occidentalis L.(Cupressaceae): Ethnobotany, phytochemistry and biological activity, Molecules, 25(22), p.5416, doi:10.3390/molecules25225416.

[12]. Thakur, M., Sobti, R. and Kaur, T., 2023, Asian Pacific Journal of Tropical Medicine, Asian Pacific Journal of Tropical Medicine, 16(4), doi:10.4103/1995-7645.374353.

[13]. Adhikary, K., 2020,  Plant with Beneficial Properties Thuja occidentalis L.(Cupressaceae)-A Review, International Journal for Research in Applied Science & Engineering Technology, 8, pp.2407-2409, doi:10.22214/ijraset.2020.6387.

[14]. Ghantous, Y., Schussel, J.L. and Brait, M., 2018, Tobacco and alcohol-induced epigenetic changes in oral carcinoma, Current Opinion in Oncology, 30(3), pp.152-158, doi:10.1097/CCO.0000000000000444.

[15]. Markopoulos, A.K., 2012, Current aspects on oral squamous cell carcinoma, The Open Dentistry Journal, 6, p.126, doi:10.2174/1874210601206010126.

[16]. Devi, P., Dwivedi, R., Sankar, R., Jain, A., Gupta, S. and Gupta, S., 2024, Unraveling the Genetic Web: H-Ras Expression and Mutation in Oral Squamous Cell Carcinoma—A Systematic Review, Head and Neck Pathology, 18(1), p.21, doi:10.1007/s12105-024-01623-8.

[17]. Krishna, A., Singh, S., Singh, V., Kumar, V., Singh, U.S. and Sankhwar, S.N., 2018, Does Harvey-Ras gene expression lead to oral squamous cell carcinoma? A clinicopathological aspect, Journal of Oral and Maxillofacial Pathology, 22(1), pp.65-72, doi:10.4103/jomfp.JOMFP_246_17.

[18]. Gunardi, I., Sufiawati, I., Goenawan, H., Herawati, D.M.D., Lesmana, R, and Abdullah, A.G., 2023, Research Trends in Molecular Biological Studies on Oral Squamous Cell Carcinoma: A Bibliometric Analysis, Oncology Reviews, 17, p.11585, doi:10.3389/or.2023.11585.

[19]. Misra, J.R. and Irvine, K.D., 2018, The Hippo signaling network and its biological functions, Annual Review of Genetics52(1), pp.65-87, doi: 10.1146/annurev-genet-120417-031621.

[20]. Mesgari, H., Esmaelian, S., Nasiri, K., Ghasemzadeh, S., Doroudgar, P. and Payandeh, Z., 2023, Epigenetic regulation in oral squamous cell carcinoma microenvironment: A comprehensive review, Cancers, 15(23), p.5600,doi:10.3390/cancers15235600.

[21]. Kim, S.Y., Han, Y.K., Song, J.M., Lee, C.H., Kang, K., Yi, J.M. and Park, H.R., 2019, Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma (OSCC), Clinical Epigenetics, 11, pp.1-12, doi:10.1186/s13148-019-0715-0.

[22]. Qiao, B., Li, S., Wang, D. and Wu, D., 2022, Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma, Frontiers in Oncology, 12, p.874353, doi:10.3389/fonc.2022.874353.

[23]. Mastronikolis, N.S., Kyrodimos, E., Piperigkou, Z., Spyropoulou, D., Delides, A., Giotakis, E., Alexopoulou, M., Bakalis, N.A. and Karamanos, N.K., 2024, Matrixbased molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma, IUBMB Life, doi:10.1002/iub.2803.

[24]. Bharti, K., Sharma, M., Vyas, G.K. and Sharma, S., 2022, A review on phytochemical pharmacological and biological activities of thuja occidentalis, Asian Journal of Pharmaceutical Research and Development, 10(2), pp.111-115. doi:10.22270/ajprd.v10i2.1105.

[25]. Naser, B., Bodinet, C., Tegtmeier, M. and Lindequist, U., 2005, Thuja occidentalis (Arbor vitae): a review of its pharmaceutical, pharmacological and clinical properties, EvidenceBased Complementary and Alternative Medicine, 2(1), pp.69-78, doi:10.1093/ecam/neh065.

[26]. Hovav, A.H. and Wilensky, A., 2024, The role of the epithelial sentinels, Langerhans cells and γδT cells, in oral squamous cell carcinoma, Periodontology 2000, doi:10.1111/prd.12544.

[27]. Wei, X.Y., Tan, Y.Q. and Zhou, G., 2024, γδ T cells in oral diseases, Inflammation Research, 73(5), pp.867-876, doi:10.1007/s00011-024-01870-z.

[28]. Liang, S.B., Zhang, Y.Y., Shen, C., Liang, C.H., Lai, B.Y., Dai, N., Li, Y.Q., Tian, Z.Y., Zhang, X.W., Jiang, Y. and Xiong, M., 2021, Chinese herbal medicine used with or without conventional Western therapy for COVID-19: an evidence review of clinical studies, Frontiers in Pharmacology, 11, p.583450, doi: 10.3389/fphar.2020.583450.

[29]. Chan, K.F., Duarte, J.D.G., Ostrouska, S. and Behren, A., 2022, γδ T cells in the tumor microenvironment—Interactions with other immune cells, Frontiers in Immunology, 13, p.894315, doi:10.3389/fimmu.2022.894315.

[30]. Zhou, Y., Liu, J.Q., Zhou, Z.H., Lv, X.T., Chen, Y.Q., Sun, L.Q. and Chen, F.X., 2016, Enhancement of CD3AK cell proliferation and killing ability by α-thujone, International Immunopharmacology, 30, pp.57-61, doi:10.1016/j.intimp.2015.11.027.

[31]. Sunila, E.S., Hamsa, T.P. and Kuttan, G., 2011, Effect of Thuja occidentalis and its polysaccharide on cell-mediated immune responses and cytokine levels of metastatic tumor-bearing animals, Pharmaceutical Biology, 49(10), pp.1065-1073, doi:10.3109/13880209.2011.565351.

[32]. Biswas, R., Mandal, S.K., Dutta, S., Bhattacharyya, S.S., Boujedaini, N. and Khuda-Bukhsh, A.R., 2011, Thujonerich fraction of Thuja occidentalis demonstrates major anticancer potentials: Evidences from in vitro studies on A375 cells, EvidenceBased Complementary and Alternative Medicine, 2011(1), p.568148. doi:10.1093/ecam/neq042.

[33] Saha, S., Bhattacharjee, P., Mukherjee, S., Mazumdar, M., Chakraborty, S., Khurana, A., Nayak, D., Manchanda, R., Chakrabarty, R., Das, T. and Sa, G., 2014, Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells, Oncology Reports, 31(4), pp.1589-1598. doi:10.3892/or.2014.2993.

[34] Pudełek, M., Catapano, J., Kochanowski, P., Mrowiec, K., Janik-Olchawa, N., Czyż, J. and Ryszawy, D., 2019, Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro, Fitoterapia, 134, pp.172-181.doi:10.1016/j.fitote.2019.02.020.

[35] Renu, K., 2024. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. Journal of Stomatology, Oral and Maxillofacial Surgery, p.102134.

 

[36] Chang, L.C., Song, L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M. and Kinghorn, A.D., 2000, Bioactive Constituents of Thuja o ccidentalis. Journal of Natural Products, 63(9), pp.1235-1238, doi:10.1021/np0001575.

[37] Bagot, J.L., 2020, How to prescribe Thuja occidentalis in oncology? Analysis of the literature, study of practices and personal experience, La Revue d'Homéopathie, 11(3), pp.e26-e32, doi:10.1016/j.revhom.2020.07.001.

[38] Kaarthikeyan, G., Jayakumar, N.D. and Sivakumar, D., 2019. Comparative Evaluation of Bone Formation between PRF and Blood Clot Alone as the Sole Sinus-Filling Material in Maxillary Sinus Augmentation with the Implant as a Tent Pole: A Randomized Split-Mouth Study. Journal of long-term effects of medical implants29(2).

[39] Kavarthapu, A. and Malaiappan, S., 2019. Comparative evaluation of demineralized bone matrix and type II collagen membrane versus eggshell powder as a graft material and membrane in rat model. Indian Journal of Dental Research30(6), pp.877-880.

[40] Manchery, N., John, J., Nagappan, N., Subbiah, G.K. and Premnath, P., 2019. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative: in vitro: study. Dental research journal16(5), pp.310-317.