Polydatin: A Promising Natural Agent with Anti-Hepatocellular Carcinoma Properties

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art040

Authors : Nallusamy Duraisamy, Deepan Sundararaj, Vishnuvanditha Vuppuluri, Venkatachalam Bharathi, Sakthivel Muthu

Abstract:

The review extensively examines the multifaceted anti-cancer properties of polydatin (PD), a stilbenoid compound sourced from fruits and vegetables. PD is known for its antioxidant capabilities, anti-inflammatory effects, and anti-cancer properties. The analysis delves into PD's impact on cancer characteristics such as cellular proliferation, metastasis, and apoptosis. It highlights PD's potential as a targeted therapeutic agent and its synergistic interactions with existing anti-cancer medications, aiming to enhance understanding and innovative strategies in cancer therapy. Ultimately, this review aims to provide a comprehensive analysis of PD's diverse anti-cancer attributes and intrinsic value in advancing novel paradigms in cancer treatment and prevention, instilling hope for the future of cancer therapy.

References:

[1].  Jun, J.I., Lau, L.F., 2018, Resolution of organ fibrosis. Journal of Clinical Investigation. 128(1):97-107. Doi:10.1172/JCI93563

[2].  Cheong, K.L., Yu, B., & Teng, B., 2023, Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomedicine & Pharmacotherapy. 166(115320):115320. Doi: 10.1016/j.biopha.2023.115320

[3].  Cheong, K.L., Chen, S., Teng, B., Veeraperumal, S., Zhong, S., & Tan. K., 2023, Oligosaccharides as potential regulators of gut Microbiota and intestinal health in post-COVID-19 management. Journal Pharmaceuticals (Basel). 16(6). Doi:10.3390/ph16060860.

[4].  Wang, M., Veeraperumal, S., Zhong, S., & Cheong, K.L., 2023, Fucoidan-derived functional oligosaccharides: Recent developments, preparation, and potential applications. Foods. 12(4). Doi:10.3390/foods12040878

[5].  Tang, C., Ding, R., Sun, J., Liu, J., & Kan, J., 2019, The impacts of natural polysaccharides on intestinal microbiota and immune responses-a review. Journal Food & Function is Food & Function. 10:2290-2312.

[6].  Zhang, A., Wang, J., Hu, Y., Qiu, Y., & Dong, C., 2024, Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress. International Journal of Biological Macromolecules. 271(Pt 2):131982. Doi: 10.1016/j.ijbiomac.2024.131982

[7].  Wang, M., Lu, S., Zhao, H., Liu, Z., Sheng, K., & Fang, J., 2022, Natural polysaccharides as potential anti-fibrotic agents: A review of their progress. Journal Life Sciences. 308(120953):120953. Doi: 10.1016/j.lfs.2022.120953

[8].  Zhang, L-Y LZ., 2020, Advances in the research of anti-organ fibrosis drugs. Acta Pharmaceutica Sinica B. 2510-2528.

[9].  Zhao, X., Chen, J., Sun, H., Zhang, Y., Zou, D., 2022, New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Journal Cell & Bioscience. 12(1):117. Doi:10.1186/s13578-022-00856-w

[10]. Rockey, D.C., Bell, P.D., Hill, J.A., 2015, Fibrosis-a common pathway to organ injury and failure. The New England Journal of Medicine. 372:1138-1149

[11]. Zhao, M., Wang, L., Wang, M., Zhou, S., Lu, Y., 2022, Targeting fibrosis: Mechanisms and clinical trials. Signal transduction and Targeted Therapy. 7

[12]. Kozawa, S., Tejima, K., Takagi, S., 2023, Latent inter-organ mechanism of idiopathic pulmonary fibrosis unveiled by a generative computational approach. Scientific Reports. 13(1):21981. Doi:10.1038/s41598-023-49281-0

[13]. Álvarez, J., Real, J., Guarner, F., Gueimonde, M., Rodríguez, J.M., 2021, Microbiota intestinal y salud. Gastroenterología y Hepatología. 44:519-535

[14]. Wu, Y., Li, Y., Luo, Y., 2022, Gut microbiome and metabolites: The potential key roles in pulmonary fibrosis. Frontiers in Microbiology. 13:943791. Doi:10.3389/fmicb.2022.943791

[15]. Drakopanagiotakis, F., Stavropoulou, E., Tsigalou, C., Nena, E., Steiropoulos, P., 2022 The role of the microbiome in connective-tissue-associated interstitial lung disease and pulmonary vasculitis. Biomedicines. 10(12):3195. Doi:10.3390/biomedicines10123195

[16]. Chioma, O.S., Mallott, E.K., Chapman, A., 2022, Gut microbiota modulates lung fibrosis severity following acute lung injury in mice. Communications Biology. 5(1):1401. Doi:10.1038/s42003-022-04357-x

[17]. Aydın, M.M., Akçalı, K.C., 2018, Liver fibrosis. Turkish Journal of Gastroenterology. 29(1):14-21. Doi:10.5152/tjg.2018.17330

[18]. Trautwein, C., Friedman, S.L., Schuppan, D., Pinzani, M., 2015, Hepatic fibrosis: Concept to treatment. Hepatology. 62(1 Suppl):S15-24. Doi: 10.1016/j.jhep.2015.02.039

[19]. Friedman, S.L., 2024, Hepatic fibrosis and cancer: The silent threats of metabolic syndrome. Diabetes Metab J. 48(2):161-169. Doi:10.4093/dmj.2023.0240

[20]. Lee, C.M., Yoon, E.L., Kim, M., 2024, Prevalence, distribution, and hepatic fibrosis burden of the different subtypes of steatotic liver disease in primary care settings. Hepatology. 79(6):1393-1400. Doi:10.1097/HEP.0000000000000664

[21]. Gao, L.L., Ma, J.M., Fan, Y.N., 2021, Lycium barbarum polysaccharide combined with aerobic exercise ameliorated nonalcoholic fatty liver disease through restoring gut microbiota, intestinal barrier and inhibiting hepatic inflammation. International Journal of Biological Macromolecules. 183:1379-1392. Doi: 10.1016/j.ijbiomac.2021.05.066

[22]. Li S. 2022. Investigation of the Anti-HF Mechanism of Taraxacum mongolicum Polysaccharide With Astragalus Polysaccharide Via Gut–Liver Axis.

[23]. Shu, Y., Huang, Y., Dong, W., 2023, The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. International Journal of Biological Macromolecules. 246(125662):125662. Doi: 10.1016/j.ijbiomac.2023.125662

[24]. Han, C., Li, Z., Liu, R., 2023, Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5’-monophosphate-activated protein kinase pathway and reshaping gut microbiota. Journal of the Science of Food and Agriculture. 103(15):7721-7738. Doi:10.1002/jsfa.12854

[25]. Fang, S., Wang, T., Li, Y., 2022, Gardenia jasminoides Ellis polysaccharide ameliorates cholestatic liver injury by alleviating gut microbiota dysbiosis and inhibiting the TLR4/NF-κB signaling pathway. International Journal of Biological Macromolecules 205:23-36. Doi: 10.1016/j.ijbiomac.2022.02.056

[26]. Humphreys, B.D., 2018, Mechanisms of renal fibrosis. Annual Review of Physiology. 80(1):309-326. Doi:10.1146/annurev-physiol-022516-034227

[27]. Liu, Y., 2011, Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology. 7(12):684-696. Doi:10.1038/nrneph.2011.149

[28]. Nogueira, A., Pires, M.J., Oliveira, P.A., 2017, Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo. 31(1):1-22. Doi:10.21873/invivo.11019

[29]. Yang, J., Dong, H., Wang, Y., 2020, Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis. International Journal of Biological Macromolecules. 163:442-456. Doi: 10.1016/j.ijbiomac.2020.06.153

[30]. Zhang, M., Yang, L., Zhu, M., 2022, Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. International Journal of Biological Macromolecules. 206:849-860. Doi: 10.1016/j.ijbiomac.2022.03.077

[31]. Feng, Y., Weng, H., Ling, L., 2019, Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice. International Journal of Biological Macromolecules. 132:1001-1011. Doi: 10.1016/j.ijbiomac.2019.03.242

[32]. Liu, J.X., Yuan, H.Y., Li, Y.N., Wei, Z., Liu, Y., Liang, J., 2022, Ephedra sinica polysaccharide alleviates airway inflammations of mouse asthma-like induced by PM2. 5 and ovalbumin via the regulation of gut microbiota and short chain fatty acid. Journal of Pharmacy and Pharmacology. 74:1784-1796.

[33]. Shi, C., Zhou, L., Li, H., 2022, Intestinal microbiota metabolizing Houttuynia cordata polysaccharides in H1N1 induced pneumonia mice contributed to Th17/Treg rebalance in gut-lung axis International Journal of Biological Macromolecules. 221:288-302. Doi: 10.1016/j.ijbiomac.2022.09.015

[34]. Long, H.Z., Cheng, Y., Zhou, Z.W., Luo, H.Y., Wen, D.D., Gao, L.C., 2021, PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Frontiers in Pharmacology. 12:648636. Doi:10.3389/fphar.2021.648636