Promising Health Benefits of Fucoxanthin

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art038

Authors : Palukuri Yashwanth Kumar, Prathapavarma Digala, Nallusamy Duraisamy, Deepan Sundararaj, Ajay Kumar, Samyuktha Sendhil, Sakthivel Muthu

Abstract:

Fucoxanthin, a unique carotenoid found in brown seaweed, contains an allenic bond in its structure along with a cyclic core, conjugated double bonds, and functional groups. It plays a crucial role in photosynthesis by absorbing and transferring light energy to chlorophyll a. It also exhibits health benefits, such as improving immunity and gut health and protective activities, including hepatic, neuro, and nephroprotective against various diseases, which makes it a promising pharmaceutical and dietary component for combating infectious disorders. Recent research focuses on the health-promoting properties of fucoxanthin, highlighting its various health promoting mechanisms, aiming to guide future biochemical studies toward developing new supplements utilizing fucoxanthin and its metabolites. This review provides a foundation for future health-promoting investigations focused on developing novel pharmaceutical and dietary supplements targeting fucoxanthin and its various metabolites

References:

[1].   Pruccoli, L., Balducci, M., Pagliarani, B., and Tarozzi, A., 2024, Antioxidant and Neuroprotective Effects of Fucoxanthin and Its Metabolite Fucoxanthinol: A Comparative In Vitro Study. Current Issues in Molecular Biology, 46(6), 5984-5998. https://doi.org/10.3390/cimb46060357

[2].   López-Ramos, A., González-Ortiz, M., Martínez-Abundis, E., and Pérez-Rubio, K. G., 2023, Effect of Fucoxanthin on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion. Journal of Medicinal Food, 26(7), 521-527. https://doi.org/10.1089/jmf.2022.0103

[3].   Mohibbullah, M., Haque, M. N., Sohag, A. A. M., Hossain, M. T., Zahan, M. S., Uddin, M. J., and Choi, J. S., 2022, A systematic review on marine algae-derived fucoxanthin: An update of pharmacological insights. Marine Drugs, 20(5), 279. https://doi.org/10.3390/md20050279

[4].   Mumu, M., Das, A., Emran, T. B., Mitra, S., Islam, F., Roy, A., and Kim, B. 2022, Fucoxanthin: A promising phytochemical on diverse pharmacological targets. Frontiers in Pharmacology, 13, 929442. https://doi.org/10.3389/fphar.2022.929442

[5].   Sayuti, N. H., Muhammad Nawawi, K. N., Goon, J. A., Mokhtar, N. M., Makpol, S., and Tan, J. K., 2023, A Review of the Effects of Fucoxanthin on NAFLD. Nutrients, 15(8), 1954. https://doi.org/10.3390/nu15081954

[6].   Sun, H., Yang, S., Zhao, W., Kong, Q., Zhu, C., Fu, X., and He, Y., 2023, Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Critical Reviews in Food Science and Nutrition, 63(26), 7996-8012. https://doi.org/10.1080/10408398.2022.2054932

[7].   Guan, B., Chen, K., Tong, Z., Chen, L., Chen, Q., and Su, J., 2022, Advances in fucoxanthin research for the prevention and treatment of inflammation-related diseases. Nutrients, 14(22), 4768. https://doi.org/10.3390/nu14224768

[8].   Lau, T. Y., and Kwan, H. Y., 2022, Fucoxanthin is a potential therapeutic agent for the treatment of breast cancer. Marine drugs, 20(6), 370. https://doi.org/10.3390/md20060370

[9].   Pajot, A., Hao Huynh, G., Picot, L., Marchal, L., and Nicolau, E., 2022, Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes. Marine drugs, 20(4), 222. https://doi.org/10.3390/md20040222

[10].  Noviendri, D., Fithriani, D., and Hasrini, R. F., 2020, Fucoxanthin, A Xanthophyll from Macro-and Microalgae: Extraction Techniques, Bioactivities and Their Potential Application in Nutra-and Cosmeceutical Industries. In E3S Web of Conferences (Vol. 232, p. 03010). https://doi.org/10.1051/e3sconf/202123203010

[11].  Koch, W., Kukula-Koch, W., Wawruszak, A., Okoń, E., Stępnik, K., Gaweł-Bęben, K., and Calina, D., 2024, Fucoxanthin: From chemical properties and sources to novel anticancer mechanistic insights and synergistic therapeutic opportunities. Current Research in Biotechnology, 100203. https://doi.org/10.1016/j.crbiot.2024.100203

[12].  Jaiswal, J., Srivastav, A. K., Patel, R., and Kumar, U., 2022, Synthesis and physicochemical characterization of rhamnolipid fabricated fucoxanthin loaded bovine serum albumin nanoparticles supported by simulation studies. Journal of the Science of Food and Agriculture, 102(12), 5468-5477. https://doi.org/10.1002/jsfa.11901

[13].  Su, J., Guan, B., Chen, K., Feng, Z., Guo, K., Wang, X., and Chen, Q., 2023, Fucoxanthin attenuates inflammation via interferon regulatory factor 3 (IRF3) to improve sepsis. Journal of Agricultural and Food Chemistry, 71(33), 12497-12510. https://doi.org/10.1021/acs.jafc.3c03247

[14].  Lykov, A., Rachkovskaya, L., Gevorgiz, R., Zheleznova, S., and Poveshchenko, O., 2022, The Influence of Fucoxanthin Immobilized on Porous Aluminum-Silicon Carrier Surface on the Functional Activities of Immunocytes in Mice. KnE Life Sciences, 77-83. https://knepublishing.com/index.php/KnE-Life/article/view/10109

[15].  Han, B., Ma, Y., and Liu, Y., 2022, Fucoxanthin prevents the ovalbumin-induced food allergic response by enhancing the intestinal epithelial barrier and regulating the intestinal flora. Journal of Agricultural and Food Chemistry, 70(33), 10229-10238. https://doi.org/10.1021/acs.jafc.2c04685

[16].  Lee, A. H., Shin, H. Y., Park, J. H., Koo, S. Y., Kim, S. M., and Yang, S. H., 2021, Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome activation. Scientific reports, 11(1), 543. https://doi.org/10.1038/s41598-020-80748-6

[17].  Šudomová, M., Shariati, M. A., Echeverría, J., Berindan-Neagoe, I., Nabavi, S. M., and Hassan, S. T., 2019, A microbiological, toxicological, and biochemical study of the effects of fucoxanthin, a marine carotenoid, on Mycobacterium tuberculosis and the enzymes implicated in its cell wall: A link between mycobacterial infection and autoimmune diseases. Marine drugs, 17(11), 641. https://doi.org/10.3390/md17110641

[18].  Li, X., Huang, R., Liu, K., Li, M., Luo, H., Cui, L., and Luo, L., 2021, Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MyD88 signaling axis. Aging (albany NY), 13(2), 2655. doi: 10.18632/aging.202309

[19].  Tanaka, K., Natsume, C., Azuma, Y., and Fujita, T., 2018, Fucoxanthin suppress GATA-3 positive immuno-responses. In Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology) (pp. PO2-5). Japanese Pharmacological Society. https://doi.org/10.1254/jpssuppl.WCP2018.0_PO2-5-2

[20].  Yang, X., Guo, G., Dang, M., Yan, L., Kang, X., Jia, K., and Ren, H., 2019, Assessment of the therapeutic effects of fucoxanthin by attenuating inflammation in ovalbumin-induced asthma in an experimental animal model. Journal of Environmental Pathology, Toxicology and Oncology, 38(3). DOI: 10.1615/JEnvironPatholToxicolOncol.2019030154

[21].  Su, J., Guan, B., Su, Q., Hu, S., Wu, S., Tong, Z., and Zhou, F. (2023). Fucoxanthin ameliorates sepsis via modulating microbiota by targeting IRF3 activation. International Journal of Molecular Sciences, 24(18), 13803. DOI: 10.1615/JEnvironPatholToxicolOncol.2019030154

[22].  Xiao, H., Zhao, J., Fang, C., Cao, Q., Xing, M., Li, X., and Song, S., 2020, Advances in studies on the pharmacological activities of fucoxanthin. Marine drugs, 18(12), 634. https://doi.org/10.3390/md18120634

[23].  Bernabeu, M., Gharibzahedi, S. M. T., Ganaie, A. A., Macha, M. A., Dar, B. N., Castagnini, J. M., and Barba, F. J., 2023, The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Critical Reviews in Food Science and Nutrition, 1-19, https://doi.org/10.1080/10408398.2023.2254383

[24].  Sun, X., Zhao, H., Liu, Z., Sun, X., Zhang, D., Wang, S., and Wang, D., 2020, Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high-fat diet-fed mice. Journal of agricultural and food chemistry, 68(18), 5118-5128. https://doi.org/10.1021/acs.jafc.0c01467

[25].  Guo, B., Yang, B., Pang, X., Chen, T., Chen, F., and Cheng, K. W., 2019, Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food & function, 10(9), 5644-5655. https://doi.org/10.1039/C9FO01018A

[26].  Saxena A, 2024, Anticancer Efficacy of Fucoxanthin in Targeting Ovarian Cancer Cells. International Journal of Life Sciences, Biotechnology and Pharma Research (13),6, 2024 DOI: 10.69605/ijlbpr_13.6.21

[27].  Du, H. F., Wu, J. W., Zhu, Y. S., Hua, Z. H., Jin, S. Z., Ji, J. C., and Ding, H. M., 2024, Fucoxanthin Induces Ferroptosis in Cancer Cells via Downregulation of the Nrf2/HO− 1/GPX4 Pathway. Molecules, 29(12), 2832. https://doi.org/10.3390/molecules29122832

[28].  Terasaki, M., Tsuruoka, K., Tanaka, T., Maeda, H., Shibata, M., Miyashita, K., and Hamada, A., 2023, Fucoxanthin inhibits development of sigmoid colorectal cancer in a PDX model with alterations of growth, adhesion, and cell cycle signals. Cancer Genomics & Proteomics, 20(6suppl), 686-705. DOI: https://doi.org/10.21873/cgp.20416

[29].  Ahmed, S. A., Mendonca, P., Elhag, R., and Soliman, K. F., 2022, Anticancer effects of fucoxanthin through cell cycle arrest, apoptosis induction, angiogenesis inhibition, and autophagy modulation. International Journal of Molecular Sciences, 23(24), 16091. https://doi.org/10.3390/ijms232416091

[30].  Ahmed, S. A., Mendonca, P., Messeha, S. S., Oriaku, E. T., and Soliman, K. F., 2023, The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules, 29(1), 61. https://doi.org/10.3390/molecules29010061

[31].  Zhang, X. Q., Liu, T. Y., Zhang, L. T., Hua, Z. H., Jin, X. A., Xu, F., and Ding, H. M., 2023, Effects and Mechanisms of Fucoxanthin from Hizikia fusiforme on Inhibiting Tongue Squamous Cell Carcinoma Proliferation via AKT/mTOR‐Mediated Glycolysis. Journal of Food Biochemistry, 2023(1), 7944733. https://doi.org/10.1155/2023/7944733

[32].  Luan, H., Yan, L., Zhao, Y., Ding, X., and Cao, L., 2022, Fucoxanthin induces apoptosis and reverses epithelial-mesenchymal transition via inhibiting Wnt/β-catenin pathway in lung adenocarcinoma. Discover Oncology, 13(1), 98. https://doi.org/10.1007/s12672-022-00564-4

[33].  Yang, S., Li, J., Yan, L., Wu, Y., Zhang, L., Li, B., and Lin, X., 2024. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid Deposition in Metabolic Associated Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 72(18), 10391-10405. DOI: 10.1021/acs.jafc.4c00590

[34].  Ye, J., Zheng, J., Tian, X., Xu, B., Yuan, F., Wang, B., and Huang, F., 2022, Fucoxanthin attenuates free fatty acid-induced nonalcoholic fatty liver disease by regulating lipid metabolism/oxidative stress/inflammation via the AMPK/Nrf2/TLR4 signaling pathway. Marine Drugs, 20(4), 225. https://doi.org/10.3390/md20040225

[35].  Koshak, M. F., El-Readi, M. Z., Elzubier, M. E., Refaat, B., Almaimani, R. A., Idris, S., and Eid, S. Y., 2023, Antioxidative and Anti-Inflammatory Protective Effects of Fucoxanthin against Paracetamol-Induced Hepatotoxicity in Rats. Marine Drugs, 21(11), 592. https://doi.org/10.3390/md21110592

[36].  Ben Ammar, R., Zahra, H. A., Abu Zahra, A. M., Alfwuaires, M., Abdulaziz Alamer, S., Metwally, A. M., and Al-Ramadan, S. Y., 2023, Protective effect of fucoxanthin on zearalenone-induced hepatic damage through Nrf2 mediated by PI3K/AKT signaling. Marine Drugs, 21(7), 391. https://doi.org/10.3390/md21070391

[37].  Winarto, J., Song, D. G., and Pan, C. H., 2023, The role of fucoxanthin in non-alcoholic fatty liver disease. International Journal of Molecular Sciences, 24(9), 8203. https://doi.org/10.3390/ijms24098203

[38].  Winarto, J., Song, D. G., and Pan, C. H., 2023, The role of fucoxanthin in non-alcoholic fatty liver disease. International Journal of Molecular Sciences, 24(9), 8203. https://doi.org/10.3390/ijms24098203

[39].  Bae, M., Kim, M. B., and Lee, J. Y., 2022, Fucoxanthin attenuates the reprogramming of energy metabolism during the activation of hepatic stellate cells. Nutrients, 14(9), 1902. https://doi.org/10.3390/nu14091902

[40].  Delgado-Ramallo, J. F., Ceballos-Cuevas, L., Álvarez-Gil, M., Suárez-Montes, D., Casado-Bañares, V., Goñi-de-Cerio, F., and Rodríguez, E., 2023, Phaeodactylum tricornutum as Fucoxanthin Biofactory Model and Hepatoprotective Effect of Encapsulated Spirulina and Fucoxanthin. Applied Sciences, 13(13), 7794. https://doi.org/10.3390/app13137794

[41].  Hong, D. D., Thom, L. T., Ha, N. C., Thu, N. T. H., Hien, H. T. M., Tam, L. T., ... and Ambati, R. R., 2023, Isolation of Fucoxanthin from Sargassum oligocystum Montagne, 1845 Seaweed in Vietnam and Its Neuroprotective Activity. Biomedicines, 11(8), 2310. https://doi.org/10.3390/biomedicines11082310

[42].  Ha, N. C., Thu, N. T. H., Hien, H. T. M., Tam, L. T., Duc, T. M., Van Tru, N., and Hong, D. D., 2023, Elucidation of Antioxidant and Neuroprotective Potential of Fucoxanthin Isolated from Brown Seaweed Sargassum oligocystum. 24 March 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-2721377/v1]

[43].  Lian, W., Hu, X., Zhang, J., Wu, Y., Zhao, N., Ma, H., and Lu, Q., 2023, Fucoxanthin protects retinal ganglion cells and promotes parkin-mediated mitophagy against glutamate excitotoxicity. Neuroreport, 34(7), 385-394. DOI: 10.1097/WNR.0000000000001902

[44].  Lee, N., Youn, K., Yoon, J. H., Lee, B., Kim, D. H., and Jun, M., 2023, The role of fucoxanthin as a potent Nrf2 activator via Akt/GSK-3β/Fyn axis against amyloid-β peptide-induced oxidative damage. Antioxidants, 12(3), 629. https://doi.org/10.3390/antiox12030629

[45].  Ferdous, K. A., Burnett, G., Scott, M., Amjad, E., Bannerman, S., and Park, H. A., 2022, Neuroprotective Function of Fucoxanthin in Oxidative Stress-Mediated Mitochondrial Dysfunction. Current Developments in Nutrition, 6, 787. https://doi.org/10.1093/cdn/nzac064.006

[46].  Chen, Y., Lu, H., Ding, Y., Liu, S., Ding, Y., Lu, B., and Zhou, X., 2023, Dietary protective potential of fucoxanthin as an active food component on neurological disorders. Journal of Agricultural and Food Chemistry, 71(8), 3599-3619. https://doi.org/10.1093/cdn/nzac064.006

[47].  Mao, H., Wang, L., Xiong, Y., Jiang, G., and Liu, X., 2022, Fucoxanthin attenuates oxidative damage by activating the Sirt1/Nrf2/HO‐1 signaling pathway to protect the kidney from ischemia‐reperfusion injury. Oxidative Medicine and Cellular Longevity, (1), 7444430. https://doi.org/10.1155/2022/7444430

[48].  Hudlikar, R. R., Sargsyan, D., Li, W., Wu, R., Zheng, M., and Kong, A. N., 2021, Epigenomic, transcriptomic, and protective effect of carotenoid fucoxanthin in high glucose-induced oxidative stress in Mes13 kidney mesangial cells. Chemical Research in Toxicology, 34(3), 713-722. https://doi.org/10.1021/acs.chemrestox.0c00235

[49].  El Bakary, N. M., Thabet, N. M., El Fatih, N. M., Abdel-Rafei, M. K., El Tawill, G., and Azab, K. S.,2021, Fucoxanthin alters the apelin-13/APJ pathway in certain organs of γ-irradiated mice. Journal of Radiation Research, 62(4), 600-617. https://doi.org/10.1093/jrr/rraa141

[50].  Bharathiraja, K., Babu, L. H., Vijayaprakash, S., Tamilselvan, P., and Balasubramanian, M. P., 2013, Fucoxanthin, a marine carotenoid protects cadmium-induced oxidative renal dysfunction in rats. Biomedicine & Preventive Nutrition, 3(3), 201-207. https://doi.org/10.1016/j.bionut.2013.04.005

[51].  Ou, H. C., Chou, W. C., Chu, P. M., Hsieh, P. L., Hung, C. H., and Tsai, K. L., 2019, Fucoxanthin protects against oxLDL‐induced endothelial damage via activating the AMPK‐Akt‐CREB‐PGC1α pathway. Molecular nutrition & food research, 63(10), 1801353. https://doi.org/10.1002/mnfr.201801353

[52].  Chiang, Y. F., Chen, H. Y., Chang, Y. J., Shih, Y. H., Shieh, T. M., Wang, K. L.,and Hsia, S. M., 2020, Protective effects of fucoxanthin on high glucose-and 4-hydroxynonenal (4-HNE)-induced injury in human retinal pigment epithelial cells. Antioxidants, 9(12), 1176. https://doi.org/10.3390/antiox9121176

[53].  Wang, W., Fu, C., Lin, M., Lu, Y., Lian, S., Xie, X., and Huang, M., 2022, Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Frontiers in Pharmacology, 13, 960375. https://doi.org/10.3389/fphar.2022.960375

[54].  Lee, C. Y., Chen, S. P., Huang‐Liu, R., Gau, S. Y., Li, Y. C., Chen, C. J., and Kuan, Y. H., 2022, Fucoxanthin decreases lipopolysaccharide‐induced acute lung injury through the inhibition of RhoA activation and the NF‐κB pathway. Environmental Toxicology, 37(9), 2214-2222. https://doi.org/10.1002/tox.23587

[55].  Yang, M., Xuan, Z., Wang, Q., Yan, S., Zhou, D., Naman, C. B., and Cui, W., 2022, Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutritional Neuroscience, 25(10), 2167-2180. https://doi.org/10.1002/tox.23587

[56].  Yoshiko, S., and Hoyoku, N., 2007, Fucoxanthin, a natural carotenoid, induces G1 arrest and GADD45 gene expression in human cancer cells. In vivo, 21(2), 305-310.

[57].  Mohamed Abdoul-Latif, F., Ainane, A., Houmed Aboubaker, I., Merito Ali, A., Mohamed, H., Jutur, P. P., and Ainane, T., 2024, Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals, 17(7), 960. https://doi.org/10.3390/ph17070960

[58].  Li, D., Liu, Y., Liu, Y., and Wang, S., 2022, Encapsulation of fucoxanthin in fatty acid-bovine serum albumin micelles to improve the stability, bioavailability, and bioefficacy. Colloids and Surfaces B: Biointerfaces, 220, 112951.https://doi.org/10.1016/j.colsurfb.2022.112951

[59].  Liu, Y., Qiao, Z., Liu, W., Hou, Z., Zhang, D., Huang, L., and Zhang, Y.,2019, Oleic acid as a protein ligand improving intestinal absorption and ocular benefit of fucoxanthin in water through protein-based encapsulation. Food & Function, 10(7), 4381-4395. https://doi.org/10.1039/C9FO00814D