Promising Health Benefits of Fucoxanthin

Abstract:
Fucoxanthin, a unique carotenoid found in brown
seaweed, contains an allenic bond in its structure along with a cyclic core,
conjugated double bonds, and functional groups. It plays a crucial role in
photosynthesis by absorbing and transferring light energy to chlorophyll a. It
also exhibits health benefits, such as improving immunity and gut health and
protective activities, including hepatic, neuro, and nephroprotective against
various diseases, which makes it a promising pharmaceutical and dietary
component for combating infectious disorders. Recent research focuses on the health-promoting
properties of fucoxanthin, highlighting its various health promoting
mechanisms, aiming to guide future biochemical studies toward developing new
supplements utilizing fucoxanthin and its metabolites. This review provides a
foundation for future health-promoting investigations focused on developing
novel pharmaceutical and dietary supplements targeting fucoxanthin and its
various metabolites
References:
[1].
Pruccoli,
L., Balducci, M., Pagliarani, B., and Tarozzi, A., 2024, Antioxidant and
Neuroprotective Effects of Fucoxanthin and Its Metabolite Fucoxanthinol: A
Comparative In Vitro Study. Current Issues in Molecular Biology, 46(6),
5984-5998. https://doi.org/10.3390/cimb46060357
[2].
López-Ramos,
A., González-Ortiz, M., Martínez-Abundis, E., and Pérez-Rubio, K. G., 2023, Effect
of Fucoxanthin on Metabolic Syndrome, Insulin Sensitivity, and Insulin
Secretion. Journal of Medicinal Food, 26(7), 521-527.
https://doi.org/10.1089/jmf.2022.0103
[3].
Mohibbullah,
M., Haque, M. N., Sohag, A. A. M., Hossain, M. T., Zahan, M. S., Uddin, M. J., and
Choi, J. S., 2022, A systematic review on marine algae-derived fucoxanthin: An
update of pharmacological insights. Marine Drugs, 20(5), 279.
https://doi.org/10.3390/md20050279
[4].
Mumu,
M., Das, A., Emran, T. B., Mitra, S., Islam, F., Roy, A., and Kim, B. 2022,
Fucoxanthin: A promising phytochemical on diverse pharmacological targets.
Frontiers in Pharmacology, 13, 929442.
https://doi.org/10.3389/fphar.2022.929442
[5].
Sayuti,
N. H., Muhammad Nawawi, K. N., Goon, J. A., Mokhtar, N. M., Makpol, S., and Tan,
J. K., 2023, A Review of the Effects of Fucoxanthin on NAFLD. Nutrients, 15(8),
1954. https://doi.org/10.3390/nu15081954
[6].
Sun,
H., Yang, S., Zhao, W., Kong, Q., Zhu, C., Fu, X., and He, Y., 2023,
Fucoxanthin from marine microalgae: A promising bioactive compound for
industrial production and food application. Critical Reviews in Food Science
and Nutrition, 63(26), 7996-8012. https://doi.org/10.1080/10408398.2022.2054932
[7].
Guan,
B., Chen, K., Tong, Z., Chen, L., Chen, Q., and Su, J., 2022, Advances in
fucoxanthin research for the prevention and treatment of inflammation-related
diseases. Nutrients, 14(22), 4768. https://doi.org/10.3390/nu14224768
[8].
Lau,
T. Y., and Kwan, H. Y., 2022, Fucoxanthin is a potential therapeutic agent for
the treatment of breast cancer. Marine drugs, 20(6), 370.
https://doi.org/10.3390/md20060370
[9].
Pajot,
A., Hao Huynh, G., Picot, L., Marchal, L., and Nicolau, E., 2022, Fucoxanthin
from algae to human, an extraordinary bioresource: Insights and advances in up
and downstream processes. Marine drugs, 20(4), 222.
https://doi.org/10.3390/md20040222
[10].
Noviendri,
D., Fithriani, D., and Hasrini, R. F., 2020, Fucoxanthin, A Xanthophyll from
Macro-and Microalgae: Extraction Techniques, Bioactivities and Their Potential
Application in Nutra-and Cosmeceutical Industries. In E3S Web of Conferences
(Vol. 232, p. 03010). https://doi.org/10.1051/e3sconf/202123203010
[11].
Koch,
W., Kukula-Koch, W., Wawruszak, A., Okoń, E., Stępnik, K., Gaweł-Bęben, K., and
Calina, D., 2024, Fucoxanthin: From chemical properties and sources to novel
anticancer mechanistic insights and synergistic therapeutic opportunities.
Current Research in Biotechnology, 100203.
https://doi.org/10.1016/j.crbiot.2024.100203
[12].
Jaiswal,
J., Srivastav, A. K., Patel, R., and Kumar, U., 2022, Synthesis and
physicochemical characterization of rhamnolipid fabricated fucoxanthin loaded
bovine serum albumin nanoparticles supported by simulation studies. Journal of
the Science of Food and Agriculture, 102(12), 5468-5477.
https://doi.org/10.1002/jsfa.11901
[13].
Su,
J., Guan, B., Chen, K., Feng, Z., Guo, K., Wang, X., and Chen, Q., 2023, Fucoxanthin
attenuates inflammation via interferon regulatory factor 3 (IRF3) to improve
sepsis. Journal of Agricultural and Food Chemistry, 71(33), 12497-12510.
https://doi.org/10.1021/acs.jafc.3c03247
[14].
Lykov,
A., Rachkovskaya, L., Gevorgiz, R., Zheleznova, S., and Poveshchenko, O., 2022,
The Influence of Fucoxanthin Immobilized on Porous Aluminum-Silicon Carrier
Surface on the Functional Activities of Immunocytes in Mice. KnE Life Sciences,
77-83. https://knepublishing.com/index.php/KnE-Life/article/view/10109
[15].
Han,
B., Ma, Y., and Liu, Y., 2022, Fucoxanthin prevents the ovalbumin-induced food
allergic response by enhancing the intestinal epithelial barrier and regulating
the intestinal flora. Journal of Agricultural and Food Chemistry, 70(33),
10229-10238. https://doi.org/10.1021/acs.jafc.2c04685
[16].
Lee,
A. H., Shin, H. Y., Park, J. H., Koo, S. Y., Kim, S. M., and Yang, S. H., 2021,
Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory
cytokines by regulating both NF-κB and NLRP3 inflammasome activation.
Scientific reports, 11(1), 543. https://doi.org/10.1038/s41598-020-80748-6
[17].
Šudomová,
M., Shariati, M. A., Echeverría, J., Berindan-Neagoe, I., Nabavi, S. M., and
Hassan, S. T., 2019, A microbiological, toxicological, and biochemical study of
the effects of fucoxanthin, a marine carotenoid, on Mycobacterium tuberculosis
and the enzymes implicated in its cell wall: A link between mycobacterial
infection and autoimmune diseases. Marine drugs, 17(11), 641.
https://doi.org/10.3390/md17110641
[18].
Li,
X., Huang, R., Liu, K., Li, M., Luo, H., Cui, L., and Luo, L., 2021,
Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the
TLR4/MyD88 signaling axis. Aging (albany NY), 13(2), 2655. doi:
10.18632/aging.202309
[19].
Tanaka,
K., Natsume, C., Azuma, Y., and Fujita, T., 2018, Fucoxanthin suppress GATA-3
positive immuno-responses. In Proceedings for Annual Meeting of The Japanese
Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical
Pharmacology) (pp. PO2-5). Japanese Pharmacological Society.
https://doi.org/10.1254/jpssuppl.WCP2018.0_PO2-5-2
[20].
Yang,
X., Guo, G., Dang, M., Yan, L., Kang, X., Jia, K., and Ren, H., 2019,
Assessment of the therapeutic effects of fucoxanthin by attenuating
inflammation in ovalbumin-induced asthma in an experimental animal model.
Journal of Environmental Pathology, Toxicology and Oncology, 38(3). DOI:
10.1615/JEnvironPatholToxicolOncol.2019030154
[21].
Su,
J., Guan, B., Su, Q., Hu, S., Wu, S., Tong, Z., and Zhou, F. (2023).
Fucoxanthin ameliorates sepsis via modulating microbiota by targeting IRF3
activation. International Journal of Molecular Sciences, 24(18), 13803. DOI:
10.1615/JEnvironPatholToxicolOncol.2019030154
[22].
Xiao,
H., Zhao, J., Fang, C., Cao, Q., Xing, M., Li, X., and Song, S., 2020, Advances
in studies on the pharmacological activities of fucoxanthin. Marine drugs,
18(12), 634. https://doi.org/10.3390/md18120634
[23].
Bernabeu,
M., Gharibzahedi, S. M. T., Ganaie, A. A., Macha, M. A., Dar, B. N.,
Castagnini, J. M., and Barba, F. J., 2023, The potential modulation of gut
microbiota and oxidative stress by dietary carotenoid pigments. Critical
Reviews in Food Science and Nutrition, 1-19,
https://doi.org/10.1080/10408398.2023.2254383
[24].
Sun,
X., Zhao, H., Liu, Z., Sun, X., Zhang, D., Wang, S., and Wang, D., 2020,
Modulation of gut microbiota by fucoxanthin during alleviation of obesity in
high-fat diet-fed mice. Journal of agricultural and food chemistry, 68(18),
5118-5128. https://doi.org/10.1021/acs.jafc.0c01467
[25].
Guo,
B., Yang, B., Pang, X., Chen, T., Chen, F., and Cheng, K. W., 2019, Fucoxanthin
modulates cecal and fecal microbiota differently based on diet. Food &
function, 10(9), 5644-5655. https://doi.org/10.1039/C9FO01018A
[26].
Saxena
A, 2024, Anticancer Efficacy of Fucoxanthin in Targeting Ovarian Cancer Cells.
International Journal of Life Sciences, Biotechnology and Pharma Research
(13),6, 2024 DOI: 10.69605/ijlbpr_13.6.21
[27]. Du, H. F., Wu, J. W., Zhu, Y. S., Hua, Z. H., Jin, S. Z.,
Ji, J. C., and Ding, H. M., 2024, Fucoxanthin Induces Ferroptosis in Cancer
Cells via Downregulation of the Nrf2/HO− 1/GPX4 Pathway. Molecules, 29(12),
2832. https://doi.org/10.3390/molecules29122832
[28]. Terasaki, M., Tsuruoka, K., Tanaka, T., Maeda, H.,
Shibata, M., Miyashita, K., and Hamada, A., 2023, Fucoxanthin inhibits
development of sigmoid colorectal cancer in a PDX model with alterations of
growth, adhesion, and cell cycle signals. Cancer Genomics & Proteomics,
20(6suppl), 686-705. DOI: https://doi.org/10.21873/cgp.20416
[29]. Ahmed, S. A., Mendonca, P., Elhag, R., and Soliman, K. F.,
2022, Anticancer effects of fucoxanthin through cell cycle arrest, apoptosis
induction, angiogenesis inhibition, and autophagy modulation. International
Journal of Molecular Sciences, 23(24), 16091.
https://doi.org/10.3390/ijms232416091
[30]. Ahmed, S. A., Mendonca, P., Messeha, S. S., Oriaku, E.
T., and Soliman, K. F., 2023, The Anticancer Effects of Marine Carotenoid
Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on
Triple-Negative Breast Cancer Cells. Molecules, 29(1), 61.
https://doi.org/10.3390/molecules29010061
[31]. Zhang, X. Q., Liu, T. Y., Zhang, L. T., Hua, Z. H., Jin,
X. A., Xu, F., and Ding, H. M., 2023, Effects and Mechanisms of Fucoxanthin
from Hizikia fusiforme on Inhibiting Tongue Squamous Cell Carcinoma
Proliferation via AKT/mTOR‐Mediated Glycolysis. Journal of Food Biochemistry,
2023(1), 7944733. https://doi.org/10.1155/2023/7944733
[32]. Luan, H., Yan, L., Zhao, Y., Ding, X., and Cao, L., 2022,
Fucoxanthin induces apoptosis and reverses epithelial-mesenchymal transition
via inhibiting Wnt/β-catenin pathway in lung adenocarcinoma. Discover Oncology,
13(1), 98. https://doi.org/10.1007/s12672-022-00564-4
[33]. Yang, S., Li, J., Yan, L., Wu, Y., Zhang, L., Li, B., and
Lin, X., 2024. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid
Deposition in Metabolic Associated Fatty Liver Disease. Journal of Agricultural
and Food Chemistry, 72(18), 10391-10405. DOI: 10.1021/acs.jafc.4c00590
[34]. Ye, J., Zheng, J., Tian, X., Xu, B., Yuan, F., Wang, B., and
Huang, F., 2022, Fucoxanthin attenuates free fatty acid-induced nonalcoholic
fatty liver disease by regulating lipid metabolism/oxidative
stress/inflammation via the AMPK/Nrf2/TLR4 signaling pathway. Marine Drugs,
20(4), 225. https://doi.org/10.3390/md20040225
[35]. Koshak, M. F., El-Readi, M. Z., Elzubier, M. E., Refaat,
B., Almaimani, R. A., Idris, S., and Eid, S. Y., 2023, Antioxidative and
Anti-Inflammatory Protective Effects of Fucoxanthin against Paracetamol-Induced
Hepatotoxicity in Rats. Marine Drugs, 21(11), 592.
https://doi.org/10.3390/md21110592
[36]. Ben Ammar, R., Zahra, H. A., Abu Zahra, A. M., Alfwuaires,
M., Abdulaziz Alamer, S., Metwally, A. M., and Al-Ramadan, S. Y., 2023,
Protective effect of fucoxanthin on zearalenone-induced hepatic damage through
Nrf2 mediated by PI3K/AKT signaling. Marine Drugs, 21(7), 391.
https://doi.org/10.3390/md21070391
[37]. Winarto, J., Song, D. G., and Pan, C. H., 2023, The role
of fucoxanthin in non-alcoholic fatty liver disease. International Journal of
Molecular Sciences, 24(9), 8203. https://doi.org/10.3390/ijms24098203
[38]. Winarto, J., Song, D. G., and Pan, C. H., 2023, The role
of fucoxanthin in non-alcoholic fatty liver disease. International Journal of
Molecular Sciences, 24(9), 8203. https://doi.org/10.3390/ijms24098203
[39]. Bae, M., Kim, M. B., and Lee, J. Y., 2022, Fucoxanthin
attenuates the reprogramming of energy metabolism during the activation of
hepatic stellate cells. Nutrients, 14(9), 1902.
https://doi.org/10.3390/nu14091902
[40]. Delgado-Ramallo, J. F., Ceballos-Cuevas, L., Álvarez-Gil,
M., Suárez-Montes, D., Casado-Bañares, V., Goñi-de-Cerio, F., and Rodríguez, E.,
2023, Phaeodactylum tricornutum as Fucoxanthin Biofactory Model and
Hepatoprotective Effect of Encapsulated Spirulina and Fucoxanthin. Applied
Sciences, 13(13), 7794. https://doi.org/10.3390/app13137794
[41]. Hong, D. D., Thom, L. T., Ha, N. C., Thu, N. T. H., Hien,
H. T. M., Tam, L. T., ... and Ambati, R. R., 2023, Isolation of Fucoxanthin
from Sargassum oligocystum Montagne, 1845 Seaweed in Vietnam and Its
Neuroprotective Activity. Biomedicines, 11(8), 2310.
https://doi.org/10.3390/biomedicines11082310
[42]. Ha, N. C., Thu, N. T. H., Hien, H. T. M., Tam, L. T.,
Duc, T. M., Van Tru, N., and Hong, D. D., 2023, Elucidation of Antioxidant and
Neuroprotective Potential of Fucoxanthin Isolated from Brown Seaweed Sargassum
oligocystum. 24 March 2023, PREPRINT (Version 1) available at Research Square
[https://doi.org/10.21203/rs.3.rs-2721377/v1]
[43]. Lian, W., Hu, X., Zhang, J., Wu, Y., Zhao, N., Ma, H., and
Lu, Q., 2023, Fucoxanthin protects retinal ganglion cells and promotes
parkin-mediated mitophagy against glutamate excitotoxicity. Neuroreport, 34(7),
385-394. DOI: 10.1097/WNR.0000000000001902
[44]. Lee, N., Youn, K., Yoon, J. H., Lee, B., Kim, D. H., and
Jun, M., 2023, The role of fucoxanthin as a potent Nrf2 activator via
Akt/GSK-3β/Fyn axis against amyloid-β peptide-induced oxidative damage.
Antioxidants, 12(3), 629. https://doi.org/10.3390/antiox12030629
[45]. Ferdous, K. A., Burnett, G., Scott, M., Amjad, E.,
Bannerman, S., and Park, H. A., 2022, Neuroprotective Function of Fucoxanthin
in Oxidative Stress-Mediated Mitochondrial Dysfunction. Current Developments in
Nutrition, 6, 787. https://doi.org/10.1093/cdn/nzac064.006
[46]. Chen, Y., Lu, H., Ding, Y., Liu, S., Ding, Y., Lu, B., and
Zhou, X., 2023, Dietary protective potential of fucoxanthin as an active food
component on neurological disorders. Journal of Agricultural and Food
Chemistry, 71(8), 3599-3619. https://doi.org/10.1093/cdn/nzac064.006
[47]. Mao, H., Wang, L., Xiong, Y., Jiang, G., and Liu, X., 2022,
Fucoxanthin attenuates oxidative damage by activating the Sirt1/Nrf2/HO‐1
signaling pathway to protect the kidney from ischemia‐reperfusion injury.
Oxidative Medicine and Cellular Longevity, (1), 7444430. https://doi.org/10.1155/2022/7444430
[48]. Hudlikar, R. R., Sargsyan, D., Li, W., Wu, R., Zheng, M.,
and Kong, A. N., 2021, Epigenomic, transcriptomic, and protective effect of
carotenoid fucoxanthin in high glucose-induced oxidative stress in Mes13 kidney
mesangial cells. Chemical Research in Toxicology, 34(3), 713-722.
https://doi.org/10.1021/acs.chemrestox.0c00235
[49]. El Bakary, N. M., Thabet, N. M., El Fatih, N. M.,
Abdel-Rafei, M. K., El Tawill, G., and Azab, K. S.,2021, Fucoxanthin alters the
apelin-13/APJ pathway in certain organs of γ-irradiated mice. Journal of
Radiation Research, 62(4), 600-617. https://doi.org/10.1093/jrr/rraa141
[50]. Bharathiraja, K., Babu, L. H., Vijayaprakash, S.,
Tamilselvan, P., and Balasubramanian, M. P., 2013, Fucoxanthin, a marine
carotenoid protects cadmium-induced oxidative renal dysfunction in rats.
Biomedicine & Preventive Nutrition, 3(3), 201-207.
https://doi.org/10.1016/j.bionut.2013.04.005
[51]. Ou, H. C., Chou, W. C., Chu, P. M., Hsieh, P. L., Hung,
C. H., and Tsai, K. L., 2019, Fucoxanthin protects against oxLDL‐induced
endothelial damage via activating the AMPK‐Akt‐CREB‐PGC1α pathway. Molecular
nutrition & food research, 63(10), 1801353.
https://doi.org/10.1002/mnfr.201801353
[52]. Chiang, Y. F., Chen, H. Y., Chang, Y. J., Shih, Y. H.,
Shieh, T. M., Wang, K. L.,and Hsia, S. M., 2020, Protective effects of
fucoxanthin on high glucose-and 4-hydroxynonenal (4-HNE)-induced injury in
human retinal pigment epithelial cells. Antioxidants, 9(12), 1176.
https://doi.org/10.3390/antiox9121176
[53]. Wang, W., Fu, C., Lin, M., Lu, Y., Lian, S., Xie, X., and
Huang, M., 2022, Fucoxanthin prevents breast cancer metastasis by interrupting
circulating tumor cells adhesion and transendothelial migration. Frontiers in
Pharmacology, 13, 960375. https://doi.org/10.3389/fphar.2022.960375
[54]. Lee, C. Y., Chen, S. P., Huang‐Liu, R., Gau, S. Y., Li,
Y. C., Chen, C. J., and Kuan, Y. H., 2022, Fucoxanthin decreases
lipopolysaccharide‐induced acute lung injury through the inhibition of RhoA
activation and the NF‐κB pathway. Environmental Toxicology, 37(9), 2214-2222.
https://doi.org/10.1002/tox.23587
[55]. Yang, M., Xuan, Z., Wang, Q., Yan, S., Zhou, D., Naman,
C. B., and Cui, W., 2022, Fucoxanthin has potential for therapeutic efficacy in
neurodegenerative disorders by acting on multiple targets. Nutritional
Neuroscience, 25(10), 2167-2180. https://doi.org/10.1002/tox.23587
[56]. Yoshiko, S., and Hoyoku, N., 2007, Fucoxanthin, a natural
carotenoid, induces G1 arrest and GADD45 gene expression in human cancer cells.
In vivo, 21(2), 305-310.
[57]. Mohamed Abdoul-Latif, F., Ainane, A., Houmed Aboubaker,
I., Merito Ali, A., Mohamed, H., Jutur, P. P., and Ainane, T., 2024, Unlocking
the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic
Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals, 17(7),
960. https://doi.org/10.3390/ph17070960
[58]. Li, D., Liu, Y., Liu, Y., and Wang, S., 2022,
Encapsulation of fucoxanthin in fatty acid-bovine serum albumin micelles to
improve the stability, bioavailability, and bioefficacy. Colloids and Surfaces
B: Biointerfaces, 220, 112951.https://doi.org/10.1016/j.colsurfb.2022.112951
[59]. Liu, Y., Qiao, Z., Liu, W., Hou, Z., Zhang, D., Huang,
L., and Zhang, Y.,2019, Oleic acid as a protein ligand improving intestinal
absorption and ocular benefit of fucoxanthin in water through protein-based
encapsulation. Food & Function, 10(7), 4381-4395.
https://doi.org/10.1039/C9FO00814D