Green Synthesis of Silver Nanoparticles Using Coriandrum sativum Extract and Their Antioxidant, Anti-inflammatory and Antibacterial Activities Against UTI Pathogens

Abstract:
This study explored the green synthesis of silver nanoparticles
(AgNPs) utilizing Coriandrum sativum extract and investigated their potential
applications in terms of antibacterial and antioxidant activities. UV‒visible
absorption spectra revealed a distinctive absorption peak at 450 nm, indicating
successful AgNPs synthesis and stabilization with Coriandrum sativum extract
and the TEM analysis revealed the shape to be spherical and size was found to
range between 5-25 nm. Antibacterial assays revealed concentration-dependent
zones of inhibition against Staphylococcus aureus, Escherichia coli,
Pseudomonas sp., and Klebsiella sp., confirming the efficacy of Coriandrum
sativum-mediated AgNPs as antibacterial agents. The AgNPs exhibited significant
antioxidant properties, with concentration-dependent scavenging activities
observed in the DPPH, hydrogen peroxide, and FRAP assays. Protein denaturation
assays revealed concentration-dependent effects, suggesting potential
applications in biological and medicinal contexts. Additionally, membrane
stabilization assays revealed the robust concentration-dependent impact of
Coriandrum sativum-mediated AgNPs, underscoring their promising role in diverse
applications, from antibacterial treatments to antioxidant therapies and
protein stability studies.
References:
[1]. Mancuso G,
Midiri A, Gerace E, Marra M, Zummo S, Biondo C. 2023, Urinary tract infections:
The current scenario and future prospects. Pathogens.12: 623.
doi:10.3390/pathogens12040623
[2].
England
NHS. NHS England » New awareness campaign to help reduce hospital admissions
for urinary tract infections. [cited 11 Mar 2024]. Available:
https://www.england.nhs.uk/2023/10/new-awareness-campaign-to-help-reduce-hospital-admissions-for-urinary-tract-infections
[3].
Yang X,
Chen H, Zheng Y, Qu S, Wang H, Yi F. 2022, Disease burden and long-term trends
of urinary tract infections: A worldwide report. Front Public Health. 10.
doi:10.3389/fpubh.2022.888205
[4].
Paul R. 2018,
State of the globe: Rising antimicrobial resistance of pathogens in urinary
tract infection. J Glob Infect Dis. 10: 117–118. doi:10.4103/jgid.jgid_104_17
[5].
Sánchez
SV, Navarro N, Catalán-Figueroa J, Morales JO. 2021, Nanoparticles as potential
novel therapies for urinary tract infections. Front Cell Infect Microbiol.11.
doi:10.3389/fcimb.2021.656496
[6].
Qindeel M,
Barani M, Rahdar A, Arshad R, Cucchiarini M. 2021, Nanomaterials for the
diagnosis and treatment of urinary tract infections. Nanomaterials (Basel).
211: 546. doi:10.3390/nano11020546
[7].
Yin IX,
Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. 2020, The antibacterial mechanism of
silver nanoparticles and its application in dentistry. Int J Nanomedicine.15:
2555–2562. doi:10.2147/ijn.s246764
[8].
Divya M,
Kiran GS, Hassan S, Selvin J. 2019, Biogenic synthesis and effect of silver
nanoparticles (AgNPs) to combat catheter-related urinary tract infections.
Biocatal Agric Biotechnol. 18: 101037. doi:10.1016/j.bcab.2019.101037
[9].
Alsubki R,
Tabassum H, Abudawood M, Rabaan AA, Alsobaie SF, Ansar S. 2021, Green
synthesis, characterization, enhanced functionality and biological evaluation
of silver nanoparticles based on Coriander sativum. Saudi J Biol Sci.
2021;28: 2102–2108. doi:10.1016/j.sjbs.2020.12.055
[10]. Rajeshkumar S, Tharani M, Jeevitha M,
Santhoshkumar J. 2019, Anticariogenic activity of fresh aloe Vera gel mediated
copper oxide nanoparticles. Indian J Public Health Res Dev. 10: 3664.
doi:10.5958/0976-5506.2019.04158.5
[11]. Sobhani Z, Mohtashami L, Amiri MS, Ramezani M,
Emami SA, Simal-Gandara J. 2022, Ethnobotanical and phytochemical aspects of
the edible herb Coriandrum sativum L.
J Food Sci. 87: 1386–1422. doi:10.1111/1750-3841.16085
[12]. Prachayasittikul V, Prachayasittikul S,
Ruchirawat S, Prachayasittikul V. 2018, Coriander (Coriandrum sativum):
A promising functional food toward the well-being. Food Res Int. 105: 305–323.
doi:10.1016/j.foodres.2017.11.019
[13]. Salem MA, Manaa EG, Osama N, Aborehab NM,
Ragab MF, Haggag YA, et al. 2022, Coriander (Coriandrum sativum L.)
essential oil and oil-loaded
nanoformulations as an anti-aging potentiality via TGFβ/SMAD pathway.
Sci Rep. 12: 1–15. doi:10.1038/s41598-022-10494-4
[14]. Al-Marzoqi AH, Hameed IH, Idan SA. 2015, Analysis
of bioactive chemical components of two medicinal plants (Coriandrum sativum
and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS).
African Journal of Biotechnology. Oct 23;14(40):2812-30.doi:
10.5897/AJB2015.14956
[15]. Sharma SK, Singh AP. 2012, In vitro
antioxidant and free radical scavenging activity of Nardostachys jatamansi
DC. J Acupunct Meridian Stud. 5: 112–118. doi:10.1016/j.jams.2012.03.002
[16]. Rajeshkumar S, Malarkodi C, Vanaja M,
Annadurai G. 2016, Anticancer and enhanced antimicrobial activity of
biosynthesizd silver nanoparticles against clinical pathogens. Journal of
molecular structure. 15;1116:165-73.
[17]. Bhatti MZ, Ali A, Ahmad A, Saeed A, Malik SA. 2015,
Antioxidant and phytochemical analysis of Ranunculus arvensis L.
extracts. BMC Res Notes. 8: 279. doi:10.1186/s13104-015-1228-3
[18]. Devadharshini R, Karpagam G, Pavithra K,
Kowsalya S, Priya PM, Ramachandran AM. 2023, Green synthesis of silver
nanoparticles. Microbiol Res J Int. 33: 1–9. doi:10.9734/mrji/2023/v33i51380
[19]. Tharani M, Rajeshkumar S, Al-Ghanim KA,
Nicoletti M, Sachivkina N, Govindarajan M. 2023, Terminalia chebula-Assisted
Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and
Ecotoxicity. Biomedicines. 11. doi:10.3390/biomedicines11051472
[20]. Qaeed MA. 2023, Review of Biological methods
of AgNPs Synthesis. Journal of Chemistry and Nutritional Biochemistry. 4.
doi:10.48185/jcnb.v4i1.793
[21]. Guzmán K, Kumar B, Grijalva M, Debut A, Cumbal
L. 2022, Ascorbic acid-assisted green synthesis of silver nanoparticles: pH and
stability study. Green Chemistry - New Perspectives. IntechOpen;
doi:10.5772/intechopen.107202
[22]. Chinnathambi A, Alharbi SA, Joshi D, Saranya,
Jhanani GK, On-uma R, et al. 2023, Synthesis of AgNPs from leaf extract of Naringi
crenulata and evaluation of its antibacterial activity against multidrug
resistant bacteria. Environ Res. 216: 114455. doi:10.1016/j.envres.2022.114455
[23]. Choudhary
S, Kumawat G, Khandelwal M, Khangarot RK, Saharan V, Nigam S, Harish. 2024, Phyco-synthesis
of silver nanoparticles by environmentally safe approach and their
applications. Scientific Reports. 14(1):9568.doi.org/10.1038/s41598-024-60195-3
[24]. Soleimani
M, Habibi-Pirkoohi M. 2017, Biosynthesis of silver nanoparticles using Chlorella
vulgaris and evaluation of the antibacterial efficacy against Staphylococcus
aureus. Avicenna journal of medical biotechnology. 9(3):120. PMCID:
PMC5501138.
[25]. Antioxidant and antibacterial activities of Allium
sativum ethanol extract and silver nanoparticles. 2023, Tropical Journal of
Natural Product Research. 7. doi:10.26538/tjnpr/v7i6.5
[26]. Ebrahimzadeh MA, Barani A, Habibian AH, Goli
HR, Alizadeh SR. 2023, Overcoming multidrug-resistant bacteria and fungi by
green synthesis of AgNPs using Nepeta pogonosperma extract,
optimization, characterization and evaluation of antibacterial and antifungal
effects. Eur J Chem. 14: 254–263. doi:10.5155/eurjchem.14.2.254-263.2404
[27]. Asgarpanah J, Kazemivash N. 2012, Phytochemistry,
pharmacology and medicinal properties of Coriandrum sativum L. African Journal
of Pharmacy and Pharmacology. 22;6(31):2340-5. doi:10.5897/AJPP12.901
[28]. Ali Ahmed S, Mahmood Hasan H, Ghassan Sweedan
E. 2023, Antibacterial action of AgNPs produced from different isolates of
gram-positive and gram-negative bacteria on biofilm of Klebsiella pneumoniae
isolated from RTI. Biomed (Trivandrum). 43: 983–987. doi:10.51248/.v43i3.2813
[29]. Mudhafar M, Alsailawi HA, Zorah M, Karhib MM,
Zainol I, Kadhim FK. Biogenic Synthesis and Characterization of AgNPs Using
CEPS: Cytotoxicity and Antibacterial Activites. 2023, Adv Res Fluid Mech Therm
Sci. 106: 65–75. doi:10.37934/arfmts.106.1.6575
[30]. Fereydani M, Larijani K, Aziziyan F. 2023, Green
synthesis of silver nanoparticles from Polygonum aviculare L. extract,
evaluation of antibacterial, antioxidant activity.
doi:10.22541/au.168735783.36916760/v1
[31]. Dua TK, Giri S, Nandi G, Sahu R, Shaw TK, Paul
P. 2023, Green synthesis of silver nanoparticles using Eupatorium
adenophorum leaf extract: characterizations, antioxidant, antibacterial and
photocatalytic activities. Chem Pap. 77: 2947–2956.
doi:10.1007/s11696-023-02676-9
[32]. Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR,
Korivi M, Lomada D. 2023, Antioxidant efficacy of green-synthesized silver
nanoparticles promotes wound healing in mice. Pharmaceutics. 15: 1517.
doi:10.3390/pharmaceutics15051517
[33]. Baran MF, Keskin C, Baran A, Hatipoğlu A,
Yildiztekin M, Küçükaydin S, et al. 2023, Green synthesis of silver
nanoparticles from Allium cepa L. peel extract, their antioxidant,
antipathogenic, and anticholinesterase activity. Molecules. 28: 2310.
doi:10.3390/molecules28052310
[34]. Kurup M, Kumar M, Ramanathan S, Chandra M. 2023,
The biogenetic synthesis of metallic nanoparticles and the role they play in
anti-inflammatory drug treatment. Curr Drug Discov Technol. 20.
doi:10.2174/1570163820666230718123544
[35]. Singh S, Sharma K, Sharma H. 2024, Green
extracts with metal-based nanoparticles for treating inflammatory diseases: A
review. Curr Drug Deliv. 21: 544–570. doi:10.2174/1567201820666230602164325
[36]. Sharma A, Sanjay, Jaiswal V, Park M, Lee H-J. 2023,
Biogenic silver NPs alleviate LPS-induced neuroinflammation in a human fetal
brain-derived cell line: Molecular switch to the M2 phenotype, modulation of
TLR4/MyD88 and Nrf2/HO-1 signalling pathways, and molecular docking analysis.
Biomater Adv. 148: 213363. doi:10.1016/j.bioadv.2023.213363
[37]. Xu Z, Zha X, Ji R, Zhao H, Zhou S. 2023, Green
biosynthesis of silver nanoparticles using aqueous extracts of Ageratum conyzoides and their
anti-inflammatory effects. ACS Appl Mater Interfaces.
doi:10.1021/acsami.2c22114