Control of Multidrug-Resistant Hospitalized Pathogenic Bacteria Using the Secondary Metabolites of Calotropis procera and In-silico Analysis of Bacterial Virulent Proteins

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art036

Authors : Thangaswamy Selvankumar, Ramakrishnan Jaganathan, Vuppuluri Vishnuvanditha

Abstract:

This study explores the multidrug-resistant pattern of hospitalized pathogens and their pharmacological impact against the secondary metabolites isolated from Calotropis procera, for its medicinal properties. Moreover, this study implies that comprehensive analysis, including isolation of multidrug-resistant hospitalized bacterial species and extraction and characterization of secondary metabolites by GC-MS from Calotropis procera, molecular docking, ADMET profiling, and, was conducted to evaluate the therapeutic potential of these compounds. The multidrug-resistant Klebsiella pneumonia, Salmonella typhi, and Pseudomonas aeruginosa were isolated and they also showed sensitivity against C. procera leaf extract. GC-MS reveals the key volatile compounds, including oleic acid, and the molecular docking with the proteasome (PDB ID: 5JXG) identified 5-Methyl-2-phenylindolizine as the most promising compound due to its high binding affinity (-6.7 kcal/mol), with 2,6-Dimethylphenol, 3,5-Dimethylaniline, and Ethyl Heptanoate showing progressively lower affinities. Interaction analysis highlighted the importance of PRO266, TRP531, GLU271, and ARG490 residues. ADMET profiling revealed that 2,6-dimethylphenol and 3,5-Dimethylaniline have favorable absorption and minimal CYP interactions, while 5-methyl-2-phenylindolizine demonstrated excellent absorption and BBB permeability. Additionally, the study found that C. procera metabolites could target furin, a proprotein convertase involved in bacterial virulence, offering a novel approach to combat multidrug-resistant bacterial infections. These findings underscore the potential of Calotropis procera metabolites as effective therapeutic agents and active against multidrug-resistant bacterial species.

References:

[1].   Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. 2023., Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare.11: 1946. doi:10.3390/healthcare11131946

[2].   Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R., 2023, Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci Total Environ. 877: 162772. doi:10.1016/j.scitotenv.2023.162772

[3].   Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, et al., 2024, Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol.15. doi:10.3389/fmicb.2024.1403168

[4].   Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, et al., 2024, Antimicrobial resistance: Impacts, challenges, and prospects. J Med Surgery, Public Heal. 2: 100081. doi:10.1016/j.glmedi.2024.100081

[5].   Angelini P., 2024, Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics.;13: 746. doi:10.3390/antibiotics13080746

[6].   Salam U, Ullah S, Tang Z-H, Elateeq AA, Khan Y, Khan J, et al., 2023, Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life.;13: 706. doi:10.3390/life13030706

[7].   Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al., 2022, Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int J Mol Sci. 23: 2690. doi:10.3390/ijms23052690

[8].   Sorescu A-A, Nuta A, Ion R-M, Iancu L., 2018, Qualitative Analysis of Phytochemicals from Sea Buckthorn and Gooseberry. Phytochemicals - Source of Antioxidants and Role in Disease Prevention. InTech; doi:10.5772/intechopen.77365

[9].   Ku Y-S, Contador CA, Ng M-S, Yu J, Chung G, Lam H-M., 2020, The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet.11. doi:10.3389/fgene.2020.581357

[10].  Abeed AHA, Ali M, Ali EF., 2021, Majrashi A, Eissa MA. Induction of Catharanthus roseus Secondary Metabolites When Calotropis procera Was Used as Bio-Stimulant. Plants.;10: 1623. doi:10.3390/plants10081623

[11].  Wadhwani BD, Mali D, Vyas P, Nair R, Khandelwal P., 2021, A review on phytochemical constituents and pharmacological potential of Calotropis procera. RSC Adv. 11: 35854–35878. doi:10.1039/D1RA06703F

[12].  Habeeb A, Ramesh S, Shanmugam R., 2024, Calotropis procera and the Pharmacological Properties of Its Aqueous Leaf Extract: A Review. Cureus. doi:10.7759/cureus.60354

[13].  Ong CY, Ling SK, Ali RM, Chee CF, Samah ZA, Ho ASH, et al., 2009, Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy. J Photochem Photobiol B Biol. 96: 216–222. doi:10.1016/j.jphotobiol.2009.06.009

[14].  Yang Y, Liang X, Jin P, Li N, Zhang Q, Yan W, et al., 2019, Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem–leaf saponins using ultrafiltration (UF)-LC-ESI-MS2. Phytochem Anal. 30: 26–33. doi:10.1002/pca.2787

[15].  Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, et al., 2001,p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20: 1331–1340. doi:10.1093/emboj/20.6.1331

[16].  Rahiman FA, Mahmad N, Taha RM, Elias H, Zaman FH., 2013, Antimicrobial properties of Lawsonia inermis syn. Lawsonia alba in vivo and in vitro. J Food, Agric Environ. 11: 502–504.

[17].  Padmini R, Uma Maheshwari V, Saravanan P, Woo Lee K, Razia M, Alwahibi MS, et al., 2020, Identification of novel bioactive molecules from garlic bulbs: A special effort to determine the anticancer potential against lung cancer with targeted drugs. Saudi J Biol Sci. 27: 3274–3289. doi:10.1016/j.sjbs.2020.09.041

[18].  Kirubhanand C, Merciline Leonora J, Anitha S, Sangeetha R, Nachammai KT, Langeswaran K, et al., 2023, Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches. Front Mol Biosci. 10: 1–16. doi:10.3389/fmolb.2023.1124563

[19].  Braun E, Sauter D., 2019, Furin‐mediated protein processing in infectious diseases and cancer. Clin Transl Immunol. 8. doi:10.1002/cti2.1073

[20].  Douglas LEJ, Reihill JA, Montgomery BM, Martin SL., 2023, Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev. 32: 220256. doi:10.1183/16000617.0256-2022

[21].  Krueger E, Brown AC., 2019, Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng. 13: 4. doi:10.1186/s13036-018-0138-z

[22].  do Vale A, Cabanes D, Sousa S., 2016, Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol. 7. doi:10.3389/fmicb.2016.00042

[23].  Zhang H, Zhang Z, Li J, Qin G., 2023, New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel). 15: 570. doi:10.3390/toxins15090570

[24].  Devi KP, Pourkarim MR, Thijssen M, Sureda A, Khayatkashani M, Cismaru CA, et al.,  2022, A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol Reports. 74: 425–430. doi:10.1007/s43440-021-00344-x

[25].  Jaganathan R, Kumaradhas P., 2024, Structural insights into Furin enzyme inhibition to block SARS-CoV-2 spike protein cleavage: an in-silico approach. 3 Biotech. 14: 213. doi:10.1007/s13205-024-04054-y

[26].  Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al., 2010, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. 30: 2785–2791. doi:10.1002/jcc.21256.AutoDock4

[27].  Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al., 2002, The protein data bank. Acta Crystallogr Sect D Biol Crystallogr. 58: 899–907. doi:10.1107/S0907444902003451

[28].  Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. 2021, PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49,  D1388–D1395. doi:10.1093/nar/gkaa971

[29].  Dahms SO, Arciniega M, Steinmetzer T, Huber R, Than ME., 2016, Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc Natl Acad Sci U S A. 113: 11196–11201. doi:10.1073/pnas.1613630113

[30].  DeLano WL., 2002, Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 40: 82–92.

[31].  BIOVIA. 2016. Discovery Studio Modeling Environment. San Diego: Dassault Systems.

[32].  Pires DE V., Blundell TL, Ascher DB., 2015, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 58: 4066–4072. doi:10.1021/acs.jmedchem.5b00104

[33].  Fiehn O., 2016, Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr Protoc Mol Biol. 114. doi:10.1002/0471142727.mb3004s114

[34].  Jeyasundari J, Praba P, Jacob Y, Rajendran S, Kaleeswari K., 2016, Green Synthesis and Characterization of Silver Nanoparticles Using Mimusops elengi Flower Extract and Its Synergistic Antimicrobial Potential. Am Chem Sci J. 12: 1–11. doi:10.9734/ACSJ/2016/23161

[35].  Deshmukh SP, Patil SM, Mullani SB, Delekar SD., 2019, Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C. 97: 954–965. doi:10.1016/j.msec.2018.12.102