Curcumin Versus Curcumin-Iron Complex Docking in Tuberculosis Targets: A Insights on Synthesis & Molecular Docking Study

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art030

Authors : Sarvesh Sabarathinam, Nishitha Gandavaram

Abstract:

In this contemporary state Natural products play a significant role in drug discovery. This research investigates a Curcumin-Iron complex (CuFe) as a potential new weapon against tuberculosis (TB).  The study highlights the global burden of TB and the need for alternatives due to rising drug resistance. Curcumin, a promising compound from turmeric, suffers from poor absorption in the body. The researchers created CuFe and confirmed its structure using XRD analysis to address this. Using computer simulations, they then tested CuFe's binding to key targets in the TB bacteria. Excitingly, CuFe showed superior binding compared to curcumin and existing drugs.  The discussion emphasizes the potential of plant-based medicines like curcumin, along with metal complexes, mentioning garlic and piperine as further avenues. The authors conclude that CuFe is a promising candidate, but further testing in animals and humans, along with studies on absorption and regulatory approval, is needed before it can be considered a viable TB treatment.

References:

[1].   Oryema, C., Rutaro, K., Oyet, S.W., and Malinga, G.M., 2021. Ethnobotanical plants used in the management of symptoms of tuberculosis in rural Uganda. Tropical Medicine and Health.; 49, 92. 10.1186/s41182-021-00384-2.

[2].   Mangwani, N., Singh, P.K., and Kumar, V., 2020. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. Journal of Ayurveda and integrative medicine.; 11, 522-528. 10.1016/j.jaim.2019.02.004.

[3].   Terreni, M., Taccani, M., and Pregnolato, M.,2021. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules (Basel, Switzerland).; 26. 10.3390/molecules26092671.

[4].   Sharifi-Rad, J., Rayess, Y.E., Rizk, A.A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., et al., 2020. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in pharmacology.; 11, 01021. 10.3389/fphar.2020.01021.

[5].   Iweala, E.J., Uche, M.E., Dike, E.D., Etumnu, L.R., Dokunmu, T.M., Oluwapelumi, A.E., Okoro, B.C., Dania, O.E., Adebayo, A.H., and Ugbogu, E.A., 2023. Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review. Pharmacological Research - Modern Chinese Medicine .; 6, 100222. https://doi.org/10.1016/j.prmcm.2023.100222.

[6].   Naksuriya, O., Okonogi, S., Schiffelers, R.M., and Hennink, W.E., 2014. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials.; 35, 3365-3383. https://doi.org/10.1016/j.biomaterials.2013.12.090.

[7].   Idoudi, S., Bedhiafi, T., Hijji, Y.M., and Billa, N., 2022. Curcumin and Derivatives in Nanoformulations with Therapeutic Potential on Colorectal Cancer. AAPS PharmSciTech.; 23, 115. 10.1208/s12249-022-02268-y.

[8].   Iranshahi, M., Chini, M.G., Masullo, M., Sahebkar, A., Javidnia, A., Chitsazian Yazdi, M., Pergola, C., Koeberle, A., Werz, O., Pizza, C., et al.,  2015. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors. Journal of Natural Products 78, 2867-2879. 10.1021/acs.jnatprod.5b00700.

[9].   Delpu, Y., Cordelier, P., Cho, W.C., and Torrisani, J.,  2013. DNA Methylation and Cancer Diagnosis. 14, 15029-15058.

[10].  Afzal, O., Yusuf, M., Ahsan, M.J., Altamimi, A.S.A., Bakht, M.A., Ali, A., and Salahuddin.,  2022. Chemical Modification of Curcumin into Its Semi-Synthetic Analogs Bearing Pyrimidinone Moiety as Anticancer Agents. 11, 2737.

[11].  Venkatesan, P., and Rao, M.N.A., 2010. Structure–Activity Relationships for the Inhibition of Lipid Peroxidation and the Scavenging of Free Radicals by Synthetic Symmetrical Curcumin Analogues. Journal of Pharmacy and Pharmacology 52, 1123-1128. 10.1211/0022357001774886 %J Journal of Pharmacy and Pharmacology.

[12].  Hatamie, S., Nouri, M., Karandikar, S.K., Kulkarni, A., Dhole, S.D., Phase, D.M., and Kale, S.N., 2012. Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Materials Science and Engineering: C 32, 92-97. https://doi.org/10.1016/j.msec.2011.10.002.

[13].  Refat, M.S., 2013. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 105, 326-337. https://doi.org/10.1016/j.saa.2012.12.041.

[14].  Sun, X., Tsang, C.-N., and Sun, H., 2008. Identification and characterization of metallodrug binding proteins by (metallo)proteomics†. Metallomics 1, 25-31. 10.1039/b813121j %J Metallomics.

[15].  Vaithiyalingam, M., Sumathi, D.L., and Sabarathinam, S., 2023. Isolation and In silico Study of Curcumin from Curcuma longa and Its Anti-Diabetic Activity. Applied biochemistry and biotechnology 195, 947-957. 10.1007/s12010-022-04173-3.

[16].  Bicer, N., Yildiz, E., Yegani, A.A., and Aksu, F., 2018. Synthesis of curcumin complexes with iron(iii) and manganese(ii), and effects of curcumin–iron(iii) on Alzheimer's disease. New Journal of Chemistry 42, 8098-8104. 10.1039/C7NJ04223J.

[17].  Vaithiyalingam, M., Mohan Kumar, R., Khagar, P., Sabarathinam, S., Alghazwani, Y., and Chidambaram, K., 2024. Isolation of 6-gingerol and semi-synthesis of 1,4-benzodiazepines derivatives: An in-situ pharmacokinetics properties, molecular docking and molecular dynamics simulation assessments. Saudi Journal of Biological Sciences 31, 104048. 10.1016/j.sjbs.2024.104048.

[18].  Sabarathinam, S., Ganamurali, N., Satheesh, S., Dhanasekaran, D., and Raja, A., 2023. Pharmacokinetic correlation of structurally modified chalcone derivatives as promising leads to treat tuberculosis. Future Medicinal Chemistry. 10.4155/fmc-2023-0161.

[19].  Yang, X., Liu, Y., Gan, J., Xiao, Z.-X., and Cao, Y., 2022. FitDock: protein–ligand docking by template fitting. Briefings in Bioinformatics 23. 10.1093/bib/bbac087.

[20].  Liu, Y., Grimm, M., Dai, W.T., Hou, M.C., Xiao, Z.X., and Cao, Y., 2020. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta pharmacologica Sinica 41, 138-144. 10.1038/s41401-019-0228-6.

[21].  Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z.-X., and Cao, Y., 2022. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research 50, W159-W164. 10.1093/nar/gkac394 %J Nucleic Acids Research.

[22].  Hartkoorn, R.C., Sala, C., Neres, J., Pojer, F., Magnet, S., Mukherjee, R., Uplekar, S., Boy-Röttger, S., Altmann, K.-H., and Cole, S.T.,  2012. Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. 4, 1032-1042. https://doi.org/10.1002/emmm.201201689.

[23].  Rozwarski, D.A., Vilchèze, C., Sugantino, M., Bittman, R., and Sacchettini, J.C., 1999. Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate*. Journal of Biological Chemistry 274, 15582-15589. https://doi.org/10.1074/jbc.274.22.15582.

[24].  Freundlich, J.S., Wang, F., Vilchèze, C., Gulten, G., Langley, R., Schiehser, G.A., Jacobus, D.P., Jacobs Jr., W.R., and Sacchettini, J.C., 2009. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. 4, 241-248. https://doi.org/10.1002/cmdc.200800261.

[25].  Neres, J., Hartkoorn, R.C., Chiarelli, L.R., Gadupudi, R., Pasca, M.R., Mori, G., Venturelli, A., Savina, S., Makarov, V., Kolly, G.S., et al., 2015. 2-Carboxyquinoxalines Kill Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1. ACS Chemical Biology 10, 705-714. 10.1021/cb5007163.

[26].  Aggarwal, A., Parai, M.K., Shetty, N., Wallis, D., Woolhiser, L., Hastings, C., Dutta, N.K., Galaviz, S., Dhakal, R.C., Shrestha, R., et al., 2017. Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13. Cell 170, 249-259.e225. https://doi.org/10.1016/j.cell.2017.06.025.

[27].  Nikiforov, P.O., Surade, S., Blaszczyk, M., Delorme, V., Brodin, P., Baulard, A.R., Blundell, T.L., and Abell, C., 2016. A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Organic & Biomolecular Chemistry 14, 2318-2326. 10.1039/C5OB02630J.

[28].  Willand, N., Dirié, B., Carette, X., Bifani, P., Singhal, A., Desroses, M., Leroux, F., Willery, E., Mathys, V., Déprez-Poulain, R., et al., 2009. Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nature Medicine 15, 537-544. 10.1038/nm.1950.

[29].  Zhang, Z., Bulloch, E.M., Bunker, R.D., Baker, E.N., and Squire, C.J. 2009., Structure and function of GlmU from Mycobacterium tuberculosis. Acta crystallographica. Section D, Biological crystallography 65, 275-283. 10.1107/s0907444909001036.

[30].  Kumar, M., Singh, S.K., Singh, P.P., Singh, V.K., Rai, A.C., Srivastava, A.K., Shukla, L., Kesawat, M.S., Kumar Jaiswal, A., Chung, S.M., and Kumar, A., 2021. Potential Anti-Mycobacterium tuberculosis Activity of Plant Secondary Metabolites: Insight with Molecular Docking Interactions. Antioxidants (Basel, Switzerland) 10. 10.3390/antiox10121990.

[31].  Scarim, C.B., Lira de Farias, R., Vieira de Godoy Netto, A., Chin, C.M., Leandro dos Santos, J., and Pavan, F.R., 202. Recent advances in drug discovery against Mycobacterium tuberculosis: Metal-based complexes. European Journal of Medicinal Chemistry 214, 113166. https://doi.org/10.1016/j.ejmech.2021.113166.

[32].  Mjos, K.D., and Orvig, C., 2014. Metallodrugs in Medicinal Inorganic Chemistry. Chemical Reviews .; 114, 4540-4563. 10.1021/cr400460s.

[33].  Pawar, A., Jha, P., Chopra, M., Chaudhry, U., and Saluja, D., 2020. Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Scientific Reports.;  10, 949. 10.1038/s41598-020-57658-8.

[34].  Sarangi, A., Das, B.S., Patnaik, G., Sarkar, S., Debnath, M., Mohan, M., and Bhattacharya, D.,2021. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. Journal of applied microbiology., 131, 1578-1599. 10.1111/jam.15088.

[35].  Irfan, M., Lee, Y. Y., Lee, K. J., Kim, S. D., & Rhee, M. H., 2022. Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts. Journal of Ginseng Research, 46(3), 387-395.

[36].  Singla, N., Gupta, G., Kulshrestha, R., Sharma, K., Bhat, A. A., Mishra, R., Gupta, S., 2024. Daidzein in Traditional Chinese Medicine: A Deep Dive into Its Ethnomedicinal and Therapeutic Applications. Pharmacological Research-Modern Chinese Medicine, 12 (01) 100460.

[37].  Wang, J., Behl, T., Rana, T., Sehgal, A., Wal, P., Saxena, B., ... & Singla, R. K., 2024. Exploring the Pathophysiological Influence of Heme Oxygenase-1 on Neuroinflammation and Depression: A Study of Phytotherapeutic-Based Modulation. Phytomedicine,; 127 (07)155466.