Computational Design of Bioactive Epigallocatechin Gallate (EGCG) Analogues Targeting Heme Oxygenase-1 (HO-1) Pathway for Metabolic Regulation

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art029

Authors : Sarvesh Sabarathinam, Mithun Athiraj AT

Abstract:

Epigallocatechin-gallate (EGCG) is a flavone-based natural product that has a more significant impact on Diabetes and other cardiometabolic complications. This in silico based computer-aided drug design ensures the drug's Pharmacokinetic parameters and particular compounds towards the precise target. Based on the network data designed, EGCG were docked against PDB: 1N3U, using Dimethyl fumarate as the standard reference. Such desirable quality of modified EGCG will create a spark in the novel drug discovery of a bioenhancer. This slight evidence will support a higher quantum of drug discovery in semisynthetic chemistry toward Metabolic Complications.

References:

[1].   Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M., 2020, Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis, Health promotion perspectives, 10(2):98-115. Epub 2020/04/17. doi: 10.34172/hpp.2020.18. PubMed PMID: 32296622; PubMed Central PMCID: PMCPMC7146037.

[2].   Tiwari S, Ndisang JF, 2014, The heme oxygenase system and type-1 diabetes, Current pharmaceutical design, 20(9):1328-37. Epub 2013/08/28. doi: 10.2174/13816128113199990552. PubMed PMID: 23978102.

[3].   Roberts MS, Burbelo PD, Egli-Spichtig D, Perwad F, Romero CJ, Ichikawa S, et al., 2018, Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies, The Journal of clinical investigation, 128(12):5368-73. Epub 2018/09/19. doi: 10.1172/jci122004. PubMed PMID: 30226830; PubMed Central PMCID: PMCPMC6264742.

[4].   Pozzilli P, Pieralice S., 2018, Latent Autoimmune Diabetes in Adults: Current Status and New Horizons, Endocrinology and metabolism, 33(2):147-59. Epub 2018/06/28. doi: 10.3803/EnM.2018.33.2.147. PubMed PMID: 29947172; PubMed Central PMCID: PMCPMC6021307.

[5].   Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C., 2018, On type 1 diabetes mellitus pathogenesis, Endocrine connections,7(1):R38-r46. Epub 2017/12/02. doi: 10.1530/ec-17-0347. PubMed PMID: 29191919; PubMed Central PMCID: PMCPMC5776665.

[6].   Rosenblum MD, Remedios KA, Abbas A K., 2015, Mechanisms of human autoimmunity, The Journal of clinical investigation, 125(6):2228-33. Epub 2015/04/22. doi: 10.1172/jci78088. PubMed PMID: 25893595; PubMed Central PMCID: PMCPMC4518692.

[7].   Atkinson MA, Maclaren NK., 1994, The pathogenesis of insulin-dependent diabetes mellitus, The New England journal of medicine, 331(21):1428-36. Epub 1994/11/24. doi: 10.1056/nejm199411243312107. PubMed PMID: 7969282.

[8].   Eizirik DL, Colli ML, Ortis F., 2009, The role of inflammation in insulitis and beta-cell loss in type 1 diabetes,  Nature reviews Endocrinology, 5(4):219-26. Epub 2009/04/09. doi: 10.1038/nrendo.2009.21. PubMed PMID: 19352320.

[9].   Martin SJ, Green DR, 1995, Protease activation during apoptosis: Death by a thousand cuts?, Cell, 82(3):349-52. doi: https://doi.org/10.1016/0092-8674(95)90422-0.

[10].  Tomita T, 2017, Apoptosis of pancreatic β-cells in Type 1 diabetes,  Bosnian journal of basic medical sciences, 17(3):183-93. Epub 2017/04/04. doi: 10.17305/bjbms.2017.1961. PubMed PMID: 28368239; PubMed Central PMCID: PMCPMC5581966.

[11].  Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al,. 2020, Pathophysiology of Type 2 Diabetes Mellitus, International journal of molecular sciences, 21(17). Epub 2020/09/03. doi: 10.3390/ijms21176275. PubMed PMID: 32872570; PubMed Central PMCID: PMCPMC7503727.

[12].  Riddle MC, Cefalu WT, Evans PH, Gerstein HC, Nauck MA, Oh WK, et al., 2021, Consensus Report: Definition and Interpretation of Remission in Type 2 Diabetes, The Journal of Clinical Endocrinology & Metabolism, 107(1):1-9. doi: 10.1210/clinem/dgab585 %J The Journal of Clinical Endocrinology & Metabolism.

[13].  Shoelson SE, Lee J, Goldfine AB., 2006, Inflammation and insulin resistance, The Journal of clinical investigation, 116(7):1793-801. Epub 2006/07/11. doi: 10.1172/jci29069. PubMed PMID: 16823477; PubMed Central PMCID: PMCPMC1483173.

[14].  Takaoka M, Nagata D, Kihara S, Shimomura I, Kimura Y, Tabata Y, et al., 2009, .Periadventitial adipose tissue plays a critical role in vascular remodeling, Circulation research, 105(9):906-11. Epub 2009/09/19. doi: 10.1161/circresaha.109.199653. PubMed PMID: 19762682.

[15].  Maliszewska K, Kretowski A., 2021, Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis, Int J Mol Sci, 22(4):1530. PubMed PMID: doi:10.3390/ijms22041530.

[16].  Mileti E, Kwok KHM, Andersson DP, Mathelier A, Raman A, Bäckdahl J, et al., 2021, Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State, Diabetes , 70(7):1486-97. doi: 10.2337/db21-0001 %J Diabetes.

[17].  Tomita T, 2016, Apoptosis in pancreatic β-islet cells in Type 2 diabetes, Bosnian journal of basic medical sciences, 16(3):162-79. Epub 2016/05/23. doi: 10.17305/bjbms.2016.919. PubMed PMID: 27209071; PubMed Central PMCID: PMCPMC4978108.

[18].  Mitsuishi Y, Motohashi H, Yamamoto M, 2012, The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism, Frontiers in oncology, 2:200. Epub 2012/12/29. doi: 10.3389/fonc.2012.00200. PubMed PMID: 23272301; PubMed Central PMCID: PMCPMC3530133.

[19].  Kobayashi M, Yamamoto M, 2006, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Advances in enzyme regulation, 46:113-40. Epub 2006/08/05. doi: 10.1016/j.advenzreg.2006.01.007. PubMed PMID: 16887173.

[20].  Kansanen E, Kuosmanen SM, Leinonen H, Levonen A L, 2013, The Keap1-Nrf2 pathwy: Mechanisms of activation and dysregulation in cancer, Redox biology, 1(1):45-9. Epub 2013/09/12. doi: 10.1016/j.redox.2012.10.001. PubMed PMID: 24024136; PubMed Central PMCID: PMCPMC3757665.

[21].  Canning P, Sorrell FJ, Bullock AN, 2015, Structural basis of Keap1 interactions with Nrf2, Free radical biology & medicine, 88(Pt B):101-7. Epub 2015/06/10. doi: 10.1016/j.freeradbiomed.2015.05.034. PubMed PMID: 26057936; PubMed Central PMCID: PMCPMC4668279.

[22].  Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, et al., 2015, Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease, Free radical biology & medicine, 88(Pt B):108-46. Epub 2015/07/01. doi: 10.1016/j.freeradbiomed.06.021. PubMed PMID: 26122708; PubMed Central PMCID: PMCPMC4659505.

[23].  Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J., 2016, Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism, Cellular and Molecular Life Sciences, 73(17):3221-47. doi: 10.1007/s00018-016-2223-0.

[24].  Araujo J, Zhang M, Yin F, 2012, Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclerosis, 3(01):01-14. doi: 10.3389/fphar.2012.00119.

[25].  Barañano DE, Ferris CD, Snyder SH, 2021, Atypical neural messengers, Trends in Neurosciences, 24(2):99-106. doi: https://doi.org/10.1016/S0166-2236(00)01716-1.

[26].  Rochette L, Zeller M, Cottin Y, Vergely C, 2018, Redox Functions of Heme Oxygenase-1 and Biliverdin Reductase in Diabetes, Trends in Endocrinology & Metabolism,29(2):74-85. doi: https://doi.org/10.1016/j.tem.2017.11.005.

[27].  Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH, 2009, Bilirubin and glutathione have complementary antioxidant and cytoprotective roles, Proc Natl Acad Sci U S A, 106(13):5171-6. doi: doi:10.1073/pnas.0813132106.

[28].  Seyoum A, Asres K, El-Fiky FK, 2006, Structure-radical scavenging activity relationships of flavonoids. Phytochemistry, 67(18):2058-70. Epub 2006/08/22. doi: 10.1016/j.phytochem.2006.07.002. PubMed PMID: 16919302.

[29].  Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al., 2014, TCMSP: a database of systems pharmacology for drug discovery from herbal medicines, Journal of Cheminformatics, 6(1):13. doi: 10.1186/1758-2946-6-13.

[30].  Ouassou H, Zahidi T, Bouknana S, Bouhrim M, Mekhfi H, Ziyyat A, et al., 2018, Inhibition of α-Glucosidase, Intestinal Glucose Absorption, and Antidiabetic Properties by Caralluma europaea, Evidence-based complementary and alternative medicine: eCAM, 9589472. Epub 2018/09/20. doi: 10.1155/2018/9589472. PubMed PMID: 30228829; PubMed Central PMCID: PMCPMC6136516.

[31].  Turner N, Zeng X-Y, Osborne B, Rogers S, Ye J-M, 2016, Repurposing Drugs to Target the Diabetes Epidemi, Trends in Pharmacological Sciences. 37(5):379-89. doi: https://doi.org/10.1016/j.tips.2016.01.007.

[32].  Wang B, Sun J, Li X, Zhou Q, Bai J, Shi Y, et al., 2013, Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet–induced obesity, Nutrition Research.33(11):971-81. doi: https://doi.org/10.1016/j.nutres.2013.07.016.

[33].  Song M-Y, Kim E-K, Moon W-S, Park J-W, Kim H-J, So H-S, et al., 2009, Sulforaphane protects against cytokine- and streptozotocin-induced β-cell damage by suppressing the NF-κB pathway. Toxicology and Applied Pharmacology. 235(1):57-67. doi: https://doi.org/10.1016/j.taap.2008.11.007.

[34].  Rashid K, Sil PC, 2015, Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats, Toxicology and Applied Pharmacology, 282(3):297-310. doi: https://doi.org/10.1016/j.taap.2014.12.003.

[35].  Coskun O, Kanter M, Korkmaz A, Oter S, 2005, Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacological Research, 51(2):117-23. doi: https://doi.org/10.1016/j.phrs.2004.06.002.

[36].  Chen C-Y, Jang J-H, Li M-H, Surh Y-J, 2005, Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells, Biochemical and Biophysical Research Communications, 2005;331 (4):993-1000. doi: https://doi.org/10.1016/j.bbrc.2005.03.237.

[37].  Lin C-F, Chueh T-H, Chung C-H, Chung S-D, Chang T-C, Chien C-T, 2020., Sulforaphane improves voiding function via the preserving mitochondrial function in diabetic rats, Journal of the Formosan Medical Association, 119(9):1422-30. doi: https://doi.org/10.1016/j.jfma.2019.11.017.

[38].  Nicolai A, Li M, Kim DH, Peterson SJ, Vanella L, Positano V, et al., 2009, Heme Oxygenase-1 Induction Remodels Adipose Tissue and Improves Insulin Sensitivity in Obesity-Induced Diabetic Rats, Hypertenssion, 53(3):508-15. doi: doi:10.1161/HYPERTENSIONAHA.108.124701.

[39].  Lim D-W, Kim H, Kim Y-M, Chin Y-W, Park W-H, Kim J-E, 2019, Drug repurposing in alternative medicine: herbal digestive Sochehwan exerts multifaceted effects against metabolic syndrome, Scientific Reports, 9(1):9055. doi: 10.1038/s41598-019-45099-x.

[40].  Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al., 2019, Drug repurposing: progress, challenges and recommendations, Nature Reviews Drug Discovery, 18(1):41-58. doi: 10.1038/nrd.2018.168.

[41].  Gonzalez-Alfonso JL, Peñalver P, Ballesteros AO, Morales JC, Plou FJ, 2019, Effect of α-Glucosylation on the Stability, Antioxidant Properties, Toxicity, and Neuroprotective Activity of (–)-Epigallocatechin Gallate, 6(1):1-10. doi: 10.3389/fnut.2019.00030.

[42].  Hong Z, Xu Y, Yin J-F, Jin J, Jiang Y, Du Q, 2014, Improving the Effectiveness of (−)-Epigallocatechin Gallate (EGCG) against Rabbit Atherosclerosis by EGCG-Loaded Nanoparticles Prepared from Chitosan and Polyaspartic Acid, Journal of Agricultural and Food Chemistry, 62(52):12603-9. doi: 10.1021/jf504603n.

[43].  Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, et al., 2020, Preclinical Activities of Epigallocatechin Gallate in Signaling Pathways in Cancer, Molecules, 25(3):467. PubMed PMID: doi:10.3390/molecules25030467.

[44].  Wu CC, Hsu MC, Hsieh CW, Lin JB, Lai PH, Wung BS, 2006, Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways, Life Sciences, 78(25):2889-97. doi: https://doi.org/10.1016/j.lfs.2005.11.013.

[45].  Zhou T, Zhu M, Liang Z, 2018, (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson's disease, Mol Med Rep, 17(4):4883-8. doi: 10.3892/mmr.2018.8470.

[46].  Irfan, M, Lee, YY, Lee, KJ, Kim, SD, & Rhee, MH, 2022, Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts, Journal of Ginseng Research46(3), 387-395.

[47].  Singla, N, Gupta, G, Kulshrestha, R, Sharma, K, Bhat, AA, Mishra, R, & Gupta, S, 2024, Daidzein in Traditional Chinese Medicine: A Deep Dive into Its Ethnomedicinal and Therapeutic Applications, Pharmacological Research-Modern Chinese Medicine, 100460.

[48].  Wang, J., Behl, T., Rana, T., Sehgal, A., Wal, P., Saxena, B., & Singla, R. K., 2024, Exploring the Pathophysiological Influence of Heme Oxygenase-1 on Neuroinflammation and Depression: A Study of Phytotherapeutic-Based Modulation, Phytomedicine, 155466.